1
|
Camargo-Ayala L, Prent-Peñaloza L, Osorio E, Camargo-Ayala PA, Jimenez CA, Zúñiga-Arbalti F, Brito I, Delgado GE, Gutiérrez M, Polo-Cuadrado E. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorg Chem 2024; 153:107896. [PMID: 39454497 DOI: 10.1016/j.bioorg.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a-1k and 2l-2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30-5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730001, Colombia
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Claudio A Jimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile
| | - Gerzon E Delgado
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile; Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Margarita Gutiérrez
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile.
| |
Collapse
|
2
|
Soufi H, Moussaoui M, Baammi S, Baassi M, Salah M, Daoud R, El Allali A, Belghiti ME, Moutaabbid M, Belaaouad S. Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of Flavonoid derivatives as potent cholinesterase inhibitors. J Biomol Struct Dyn 2024; 42:6027-6041. [PMID: 37485860 DOI: 10.1080/07391102.2023.2238314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
In searching for a new and efficient therapeutic agent against Alzheimer's disease, a Quantitative structure-activity relationship (QSAR) was derived for 45 Flavonoid derivatives recently synthesized and evaluated as cholinesterase inhibitors. The multiple linear regression method (MLR) was adopted to develop an adequate mathematical model that describes the relationship between a variety of molecular descriptors of the studied compounds and their biological activities (cholinesterase inhibitors). Golbraikh and Tropsha criteria were applied to verify the validity of the built model. The built MLR model was statistically reliable, robust, and predictive (R2 = 0.801, Q2cv = 0.876, R2test = 0.824). Dreiding energy and Molar Refractivity were the major factors that govern the Anti-cholinesterase activity. These results were further exploited to design a new series of Flavonoid derivatives with higher Anti-cholinesterase activities than the existing ones. Thereafter, molecular docking and molecular dynamic studies were performed to predict the binding types of the designed compounds and to investigate their stability at the active site of the Butyrylcholinestérase BuChE protein. The negative and low binding affinity calculated for all designed compounds shows that designed compound 1 has a favorable affinity for the 4TPK. Moreover, molecular dynamics simulation studies confirmed the stability of designed compound 1 in the active pocket of 4TPK over 100 ns. Finally, the ADMET analysis was incorporated to analyze the pharmacokinetics and toxicity parameters. The designed compounds were found to meet the ADMET descriptor criteria at an acceptable level having respectable intestinal permeability and water solubility and can reach the intended destinations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hatim Soufi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohamed Moussaoui
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Mouna Baassi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohammed Salah
- Team of Chemoinformatics Research and Spectroscopy and Quantum Chemistry, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Rachid Daoud
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - M E Belghiti
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
- Laboratory of Nernest Technology, Sherbrook, QC, Canada
| | - Mohammed Moutaabbid
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Said Belaaouad
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| |
Collapse
|
3
|
Gyebi GA, Ogunyemi OM, Ibrahim IM, Ogunro OB, Afolabi SO, Ojo RJ, Anyanwu GO, El-Saber Batiha G, Adebayo JO. Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis. Mol Divers 2024; 28:1305-1322. [PMID: 37338673 DOI: 10.1007/s11030-023-10658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
Neurodegenerative disorders (NDDs) are associated with increased activities of the brain acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase enzyme (BACE1). Inhibition of these enzymes affords therapeutic option for managing NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD). Although, Gongronema latifolium Benth (GL) has been widely documented in ethnopharmacological and scientific reports for the management of NDDs, there is paucity of information on its underlying mechanism and neurotherapeutic constituents. Herein, 152 previously reported Gongronema latifolium derived-phytochemicals (GLDP) were screened against hAChE, hBChE and hBACE-1 using molecular docking, molecular dynamics (MD) simulations, free energy of binding calculations and cluster analysis. The result of the computational analysis identified silymarin, alpha-amyrin and teraxeron with the highest binding energies (-12.3, -11.2, -10.5 Kcal/mol) for hAChE, hBChE and hBACE-1 respectively as compared with those of the reference inhibitors (-12.3, -9.8 and - 9.4 for donepezil, propidium and aminoquinoline compound respectively). These best docked phytochemicals were found to be orientated in the hydrophobic gorge where they interacted with the choline-binding pocket in the A-site and P-site of the cholinesterase and subsites S1, S3, S3' and flip (67-75) residues of the pocket of the BACE-1. The best docked phytochemicals complexed with the target proteins were stable in a 100 ns molecular dynamic simulation. The interactions with the catalytic residues were preserved during the simulation as observed from the MMGBSA decomposition and cluster analyses. The presence of these phytocompounds most notably silymarin, which demonstrated dual high binding tendencies to both cholinesterases, were identified as potential neurotherapeutics subject to further investigation.
Collapse
Affiliation(s)
- Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria.
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria.
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Olalekan B Ogunro
- Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria
| | - Saheed O Afolabi
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Rotimi J Ojo
- Department of Biochemistry, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria
| | - Gabriel O Anyanwu
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
4
|
Raturi A, Yadav V, Hoda N, Subbarao N, Chaudhry SA. In silico identification of colchicine derivatives as novel and potential inhibitors based on molecular docking and dynamic simulations targeting multifactorial drug targets involved in Alzheimer's disease. J Biomol Struct Dyn 2023:1-19. [PMID: 37822182 DOI: 10.1080/07391102.2023.2263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by a gradual and steady deterioration in cognitive function over time. At least 50 million people worldwide are considered to have AD or another form of dementia. AD is marked by a gradual decline in cognitive abilities, memory deterioration and neurodegenerative transformations within the brain. The intricate and multifaceted nature of polygenic AD presents significant challenges within the landscape of drug development. The pathophysiology of AD unfolds in a non-linear and dynamic pattern, encompassing various systems and giving rise to a multitude of factors and hypotheses that contribute to the disease's onset. These encompass theories such as the beta-amyloid hypothesis, cholinergic hypothesis, tau hypothesis, oxidative stress and more. In the realm of drug development, polypharmacological drug profiles have emerged as a strategy that can yield combined or synergistic effects, effectively mitigating undesirable side effects and significantly enhancing the therapeutic efficacy of essential medications. With this concept in mind, our in-silico study sought to delve into the binding interactions of a diverse array of colchicine derivative compounds. These derivatives are chosen for their potential anti-inflammatory, antioxidant, anti-neurodegenerative and neuroprotective properties against Alzheimer's and other neurodegenerative diseases. We investigated compound interactions with AD-related targets, utilizing comprehensive molecular docking and dynamic simulations. COM111X showed impressive docking with acetylcholinesterase, indicating potential as an anti-Alzheimer's drug. COM112Y displayed strong docking scores with PDE4D and butyrylcholinesterase, suggesting dual inhibition for Alzheimer's treatment. Further in vitro and in vivo studies are warranted to explore these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adity Raturi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Vikas Yadav
- School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawahar Lal Nehru University, New Delhi, India
| | | |
Collapse
|
5
|
Pishgouii F, Lotfi S, Sedaghati E. Anti-AChE and Anti-BuChE Screening of the Fermentation Broth Extracts from Twelve Aspergillus Isolates and GC-MS and Molecular Docking Studies of the Most Active Extracts. Appl Biochem Biotechnol 2023; 195:5199-5216. [PMID: 37129742 DOI: 10.1007/s12010-023-04548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, the administration of cholinesterase enzyme (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE) inhibitors is very common for the symptomatic treatment of Alzheimer's disease and the other forms of dementia and CNS disorders. In this paper, the anti-AChE and anti-BuChE activities of the fermentation broth ethyl acetate extracts from twelve Aspergillus isolates were evaluated by Ellman method. The results showed that A1 (Aspergillus flavus) and A5 (Aspergillus tubingensis, isolate 1) extracts with IC50 values of 46.77 μg/mL and 75.85 μg/mL possess the greatest ability to inhibit AChE and BuChE, respectively. GC-MS analysis of the extracts (A1 and A5) demonstrated that two alkaloids named 14-methyl-16-azabicyclo[10.3.1]hexadeca-1(15),12(16),13-triene (MAHT) and 6-chloro-2-methyl-7,8,9,10-tetrahydro-phenanthridine (CMTP) account for the highest percentage of A1 (26.95%) and A5 (25.5%) extracts, respectively. A 2-pyrazoline derivative, 5-hydroxy-3-(4-pyridinyl)-5-trifluoromethyl-1-(2,4,6-trimethylphenoxyacetyl)- (PHPTT), also constituted the high percentage (9.54%) of A5 extract. The anticholinesterase and neuroprotective effects of some 2-pyrazoline derivatives have been previously reported. The interaction study of MAHT with human AChE and CMTP and PHPTT with human BuChE using molecular docking indicated that these alkaloids bind to the active site gorge of the enzymes with high affinity. The best docking scores of MAHT, CMTP, and PHPTT were -7.1, -8.2, and -9.7 kcal/mol, respectively.
Collapse
Affiliation(s)
- Fatemeh Pishgouii
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Ebrahim Sedaghati
- Department of Plant Protection, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
6
|
Abdel Bar FM, Mira A, Foudah AI, Alossaimi MA, Alkanhal SF, Aldaej AM, ElNaggar MH. In Vitro and In Silico Investigation of Polyacetylenes from Launaea capitata (Spreng.) Dandy as Potential COX-2, 5-LOX, and BchE Inhibitors. Molecules 2023; 28:molecules28083526. [PMID: 37110760 PMCID: PMC10145610 DOI: 10.3390/molecules28083526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-β-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 μM) and 5-LOX (IC50 34.59 ± 4.26 μM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Mira
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shatha F Alkanhal
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alanoud M Aldaej
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
7
|
Luz RLSDA, Almeida RBM, Albuquerque MMS, Cerqueira APM, Tavares JF, Silva MSD, Filho RB, Dos Santos Junior MC, Branco A, Botura MB. Two new dilactonized glycerol glycosides of the dual anticholinesterase active extract from Ocotea daphnifolia using bioguided fractionation and molecular docking studies. Chem Biol Drug Des 2023; 101:855-864. [PMID: 36527177 DOI: 10.1111/cbdd.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) is considered as an important strategy for the treatment of Alzheimer's disease. In this study, we applied the bioguided fractionations of Ocotea daphinifolia ethyl acetate active extract to furnish a fraction with high inhibitory activity for AChE and BuChE (82% and 92%, respectively). High-performance liquid chromatography semipreparative purification of this fraction provided two new natural products: 1-β-D-galactopyranosyl-glycerol-2,3-heptanedionate, (1) whose complete chemical structural elucidation was made with spectrometric analysis (MS, 1D, and 2D NMR) and its minor derivative 1-β-D-gulopyranosyl-glycerol-2,3-heptanedionate; (2) which could be characterized by 2D 1 H-13 C heteronuclear single-quantum correlation spectra analysis. Investigation of the intermolecular interactions with cholinesterases was carried out by molecular docking studies, and results suggested that both compounds are capable to interact with the catalytic site of both enzymes. Compounds 1 and 2 interact with residues of catalytic domains and the peripheral anionic binding site of AChE and BuChE. The results are comparable to those achieved with rivastigmine and galantamine. Thus, this study provides evidence for consideration of the glycosylglycerol from O. daphnifolia as new valuable dual cholinesterases inhibitor.
Collapse
Affiliation(s)
| | - Raquel B M Almeida
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| | | | | | | | | | - Raimundo Braz Filho
- Department of Chemistry, State University of North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
- Department of Organic Chemistry, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - Alexsandro Branco
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| | - Mariana B Botura
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
8
|
Mlakić M, Selec I, Ćaleta I, Odak I, Barić D, Ratković A, Molčanov K, Škorić I. New Thienobenzo/Naphtho-Triazoles as Butyrylcholinesterase Inhibitors: Design, Synthesis and Computational Study. Int J Mol Sci 2023; 24:ijms24065879. [PMID: 36982951 PMCID: PMC10059756 DOI: 10.3390/ijms24065879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
This study aims to test the inhibition potency of new thienobenzo/naphtho-triazoles toward cholinesterases, evaluate their inhibition selectivity, and interpret the obtained results by molecular modeling. The synthesis of 19 new thienobenzo/naphtho-triazoles by two different approaches resulted in a large group of molecules with different functionalities in the structure. As predicted, most prepared molecules show better inhibition of the enzyme butyrylcholinesterase (BChE), considering that the new molecules were designed according to the previous results. Interestingly, the binding affinity of BChE for even seven new compounds (1, 3, 4, 5, 6, 9, and 13) was similar to that reported for common cholinesterase inhibitors. According to computational study, the active thienobenzo- and naphtho-triazoles are accommodated by cholinesterases through H-bonds involving one of the triazole's nitrogens, π-π stacking between the aromatic moieties of the ligand and aromatic residues of the active sites of cholinesterases, as well as π-alkyl interactions. For the future design of cholinesterase inhibitors and search for therapeutics for neurological disorders, compounds with a thienobenzo/naphtho-triazole skeleton should be considered.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia
| | - Ida Selec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Irena Ćaleta
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Ana Ratković
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Krešimir Molčanov
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Karaytuğ MO, Balcı N, Türkan F, Gürbüz M, Demirkol ME, Namlı Z, Tamam L, Gülçin İ. Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S-transferase inhibitors. J Biochem Mol Toxicol 2023; 37:e23259. [PMID: 36419212 DOI: 10.1002/jbt.23259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Cholinesterases catalyze the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid, allowing the nervous system to function properly. In the human body, cholinesterases come in two types, including acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). Both cholinergic enzyme inhibitors are essential in the biochemical processes of the human body, notably in the brain. On the other hand, GSTs are found all across nature and are the principal Phase II detoxifying enzymes in eukaryotes and prokaryotes. Specific isozymes are identified as therapeutic targets because they are overexpressed in various malignancies and may have a role in the genesis of other diseases such as neurological disorders, multiple sclerosis, asthma, and especially cancer cell. Piperazine chemicals have a role in many biological processes and have fascinating pharmacological properties. As a result, therapeutically effective piperazine research is becoming more prominent. Half maximal inhibition concentrations (IC50 ) of piperazine derivatives were found in ranging of 4.59-6.48 µM for AChE, 4.85-8.35 µM for BChE, and 3.94-8.66 µM for GST. Also, piperazine derivatives exhibited Ki values of 8.04 ± 5.73-61.94 ± 54.56, 0.24 ± 0.03-32.14 ± 16.20, and 7.73 ± 1.13-22.97 ± 9.10 µM toward AChE, BChE, and GST, respectively. Consequently, the inhibitory properties of the AChE/BChE and GST enzymes have been compared to Tacrine (for AChE and BChE) and Etacrynic acid (for GST).
Collapse
Affiliation(s)
- Mahmut Onur Karaytuğ
- Department of Psychiatry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Neslihan Balcı
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Fikret Türkan
- Department of Basic Sciences, Faculty of Dentistry, Iğdır University, Iğdır, Turkey
| | - Mahmut Gürbüz
- St. Elisabeth KrankenhausKlinik Fur Psychiatrie Und, Psychotherapie, Hattingen, Germany
| | - Mehmet Emin Demirkol
- Department of Psychiatry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Zeynep Namlı
- Department of Psychiatry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Lut Tamam
- Department of Psychiatry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Pradeep S, Prabhuswaminath SC, Reddy P, Srinivasa SM, Shati AA, Alfaifi MY, Eldin I. Elbehairi S, Achar RR, Silina E, Stupin V, Manturova N, Glossman-Mitnik D, Shivamallu C, Kollur SP. Anticholinesterase activity of Areca Catechu: In Vitro and in silico green synthesis approach in search for therapeutic agents against Alzheimer's disease. Front Pharmacol 2022; 13:1044248. [PMID: 36408228 PMCID: PMC9672481 DOI: 10.3389/fphar.2022.1044248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
For many years, the primary focus has been on finding effective treatments for Alzheimer's disease (AD), which has led to the identification of promising therapeutic targets. The necessity for AD stage-dependent optimal settings necessitated a herbal therapy strategy. The plant species Areca Catechu L. (AC) was selected based on the traditional uses against CNS-related diseases. AC leaf extract were prepared using a Soxhlet extraction method and hydroxyapatite nanoparticles (HAp-NPs) were synthesized from the same (AC-HAp-NPs). Powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transform infrared spectroscopy (FTIR) were used to confirm the structure and morphology of the as-prepared AC-HAp-NPs. The crystalline character of the AC-HAp-NPs was visible in the XRD pattern. The synthesized material was found to be nanoflake, with an average diameter of 15-20 nm, according to SEM analysis. The TEM and SAED pictures also revealed the form and size of AC-HAp-NPs. In vitro anti-acetylcholinesterase and butyrylcholinesterase (AChE and BChE) activities of hydroxyapatite nanoparticles produced from an AC leaf extract was tested in this study. When compared to control, AC-HAp-NPs had higher anti-AChE and BChE activity. The anti-acetylcholinesterase action of phytoconstituents generated from AC leaf extract was mediated by 4AQD and 4EY7, according to a mechanistic study conducted utilizing in silico research. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. The CDFT experiments are supplemented by the calculation of several useful calculated pharmacokinetics indices, their expected biological targets connected to the bioavailability of the five ligands in order to further the goal of studying their bioactivity.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Samudyata C. Prabhuswaminath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Sudhanva M. Srinivasa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Mandya, Karnataka, India
| | - Ali A. Shati
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Agouza, Giza, Egypt
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| |
Collapse
|
11
|
Lakra N, Matore BW, Banjare P, Singh R, Singh J, Roy PP. Pharmacophore based virtual screening of cholinesterase inhibitors: search of new potential drug candidates as antialzheimer agents. In Silico Pharmacol 2022; 10:18. [PMID: 36187087 PMCID: PMC9521886 DOI: 10.1007/s40203-022-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a distinctive medical condition characterized by loss of memory, orientation, and cognitive impairments, which is an exceptionally universal form of neurodegenerative disease. The statistical data suggested that it is the 3rd major cause of death in older persons. Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors play a vital role in the treatment of AD. Coumarins, natural derivatives, are reported as cholinesterase inhibitors and emerges as a promising scaffold for design of ligands targeting enzymes and pathological alterations related to AD. In this regard, the 3D QSAR pharmacophore models were developed for coumarin scaffold containing BChE and AChE inhibitors. Several 3D QSAR pharmacophore models were developed with FAST, BEST, and CEASER methods, and finally, statistically robust models (based on correlation coefficient, cost value, and RMSE value) were selected for further analysis for both targets. The important features ((HBA 1, HBA 2, HY, RA (BChE) HBA 1, HBA 2, HY, PI, (AChE)) were identified for good inhibitory activity of coumarin derivatives. Finally, the selected models were applied to various database compounds to find potential BChE and AChE inhibitors, and we found 13 for BChE and 1 potent compound for AChE with an estimated activity of IC50 < 10 µM. Further, the Lipinski filters, and ADMET analysis supports the selected compounds to become a drug candidate. These selected BChE and AChE inhibitors can be used in the treatment of AD. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00133-1.
Collapse
Affiliation(s)
- Nisha Lakra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Rekha Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
12
|
Epigenetic Mechanisms of Postoperative Cognitive Impairment Induced by Anesthesia and Neuroinflammation. Cells 2022; 11:cells11192954. [PMID: 36230916 PMCID: PMC9563723 DOI: 10.3390/cells11192954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment after surgery is a common problem, affects mainly the elderly, and can be divided into postoperative delirium and postoperative cognitive dysfunction. Both phenomena are accompanied by neuroinflammation; however, the precise molecular mechanisms underlying cognitive impairment after anesthesia are not yet fully understood. Anesthesiological drugs can have a longer-term influence on protein transcription, thus, epigenetics is a possible mechanism that impacts on cognitive function. Epigenetic mechanisms may be responsible for long-lasting effects and may implicate novel therapeutic approaches. Hence, we here summarize the existing literature connecting postoperative cognitive impairment to anesthesia. It becomes clear that anesthetics alter the expression of DNA and histone modifying enzymes, which, in turn, affect epigenetic markers, such as methylation, histone acetylation and histone methylation on inflammatory genes (e.g., TNF-alpha, IL-6 or IL1 beta) and genes which are responsible for neuronal development (such as brain-derived neurotrophic factor). Neuroinflammation is generally increased after anesthesia and neuronal growth decreased. All these changes can induce cognitive impairment. The inhibition of histone deacetylase especially alleviates cognitive impairment after surgery and might be a novel therapeutic option for treatment. However, further research with human subjects is necessary because most findings are from animal models.
Collapse
|
13
|
Qurrat-Ul-Ain, Abid A, Lateef M, Rafiq N, Eijaz S, Tauseef S. Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-Alzheimer, and anti-microbial agents: Structure, stability and bioactivity comparison with pallado-hydrazides. Biomed Pharmacother 2021; 146:112561. [PMID: 34965504 DOI: 10.1016/j.biopha.2021.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Herein, we report a comparative study based on structure, thermal and solution stability, and biopotency against lipoxygenase (LOX), butyrylcholinesterase (BChE) and microbes for Pd(II) compounds of N,O,S bearing 5-(C5H4XR)-1,3,4-oxadiazole-2-thiones (L') of type [PdL'Cl2] (P'n) and N,O bearing respective hydrazides (L) of type trans-[PdL2Cl2] (Pn) {X = C, R = 4-I, 2-Br, 4-NO2, 3-NO2, 2-Cl, 3-Cl (n = 1-6, serially); X = N (n = 7)}. Spectral techniques (IR, EI-MS, NMR) and physicochemical evaluations successfully characterized the new compounds. The L' behaved as bidentate S-N donors bonded through exocyclic sulfur and N-3' nitrogen, while L acted as amino N donors. UV-vis (solution speciation) and thermal degradation profiles consistently confirmed the greater stability for P'n than Pn compounds. These compounds manifested varying degree in vitro potential to inhibit LOX, BChE and several bacteria and fungi, affected mainly by Pd(II) presence, M-L binding mode, nature and position of R, or halo groups electronegativity. Molecular docking with human 5-LOX and BChE further validated the respective experimental inhibition findings and explored several putative mechanistic interactions (H-bonding, π-stacking, π-alkyl, π-S, etc.) at the enzyme active sites. Pn generally offered superior antimicrobial and anti-LOX (anti-inflammatory) potential than respective P'n compounds, with P3/P'5, P(2,3,7)/P'3, and P6 being comparable, better and equivalent to ampicillin, nystatin and baicalein, the reference antibacterial, antifungal and anti-LOX drugs, respectively. Contrarily, the anti-BChE activity of P'n was found better than Pn compounds, showing P'2/P1 as the most promising anti-Alzheimer drug candidates. This study bares important structural and mechanistic aspects in optimizing antimicrobial, anti-inflammatory and anti-Alzheimer activities, highlighting some potential future pallado-drug candidates.
Collapse
Affiliation(s)
- Qurrat-Ul-Ain
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Aisha Abid
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Mehreen Lateef
- Multi-Disciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Karachi 75500, Pakistan
| | - Naushaba Rafiq
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sana Eijaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saima Tauseef
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi 75300, Pakistan
| |
Collapse
|
14
|
Frye L, Bhat S, Akinsanya K, Abel R. From computer-aided drug discovery to computer-driven drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:111-117. [PMID: 34906321 DOI: 10.1016/j.ddtec.2021.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Computational chemistry and structure-based design have traditionally been viewed as a subset of tools that could aid acceleration of the drug discovery process, but were not commonly regarded as a driving force in small molecule drug discovery. In the last decade however, there have been dramatic advances in the field, including (1) development of physics-based computational approaches to accurately predict a broad variety of endpoints from potency to solubility, (2) improvements in artificial intelligence and deep learning methods and (3) dramatic increases in computational power with the advent of GPUs and cloud computing, resulting in the ability to explore and accurately profile vast amounts of drug-like chemical space in silico. There have also been simultaneous advancements in structural biology such as cryogenic electron microscopy (cryo-EM) and computational protein-structure prediction, allowing for access to many more high-resolution 3D structures of novel drug-receptor complexes. The convergence of these breakthroughs has positioned structurally-enabled computational methods to be a driving force behind the discovery of novel small molecule therapeutics. This review will give a broad overview of the synergies in recent advances in the fields of computational chemistry, machine learning and structural biology, in particular in the areas of hit identification, hit-to-lead, and lead optimization.
Collapse
Affiliation(s)
- Leah Frye
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, NY 10036-4041, United States
| | - Sathesh Bhat
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, NY 10036-4041, United States
| | - Karen Akinsanya
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, NY 10036-4041, United States
| | - Robert Abel
- Schrödinger Inc., 120 West 45th Street, 17th Floor, New York, NY 10036-4041, United States.
| |
Collapse
|
15
|
Rowaiye AB, Mendes YJT, Olofinsae SA, Oche JB, Oladipo OH, Okpalefe OA, Ogidigo JO. Camptothecin shows better promise than Curcumin in the inhibition of the Human Telomerase: A computational study. Heliyon 2021; 7:e07742. [PMID: 34485722 PMCID: PMC8405929 DOI: 10.1016/j.heliyon.2021.e07742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The Human Telomerase enzyme has become a drug target in the treatment of cancers and age-related disorders. This study aims to identify potential natural inhibitors of the Human Telomerase from compounds derived from edible African plants. MATERIALS AND METHODS A library of 1,126 natural compounds was molecularly docked against the Telomerase Reverse Transcriptase (PDB ID: 5ugw), the catalytic subunit of the target protein. Curcumin, a known Telomerase inhibitor was used as the standard. The front-runner compounds were screened for bioavailability, pharmacokinetic properties, and bioactivity using the SWISSADME, PKCSM, and Molinspiration webservers respectively. The molecular dynamic simulation and analyses of the apo and holo proteins were performed by the Galaxy supercomputing webserver. RESULTS The results of the molecular docking and virtual screening reveal Augustamine and Camptothecin as lead compounds. Augustamine has better drug-likeness and pharmacokinetic properties while Camptothecin showed better bioactivity and stronger binding affinity (-8.2 kcal/mol) with the target. The holo structure formed by Camptothecin showed greater inhibitory activity against the target with a total RMSF of 169.853, B-Factor of 20.164, and 108 anti-correlating residues. CONCLUSION Though they both act at the same binding site, Camptothecin induces greater Telomerase inhibition and better molecular stability than the standard, Curcumin. Further tests are required to investigate the inhibitory activities of the lead compounds.
Collapse
Affiliation(s)
| | | | - Samson Ayodeji Olofinsae
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Joyce Oloaigbe Ogidigo
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
16
|
Anticholinesterase Activity of Eight Medicinal Plant Species: In Vitro and In Silico Studies in the Search for Therapeutic Agents against Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9995614. [PMID: 34257698 PMCID: PMC8260289 DOI: 10.1155/2021/9995614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023]
Abstract
Many Bangladeshi medicinal plants have been used to treat Alzheimer's disease and other neurodegenerative diseases. In the present study, the anticholinesterase effects of eight selected Bangladeshi medicinal plant species were investigated. Species were selected based on the traditional uses against CNS-related diseases. Extracts were prepared using a gentle cold extraction method. In vitro cholinesterase inhibitory effects were measured by Ellman's method in 96-well microplates. Blumea lacera (Compositae) and Cyclea barbata (Menispermaceae) were found to have the highest acetylcholinesterase inhibitory (IC50, 150 ± 11 and 176 ± 14 µg/mL, respectively) and butyrylcholinesterase inhibitory effect (IC50, 297 ± 13 and 124 ± 2 µg/mL, respectively). Cyclea barbata demonstrated competitive inhibition, where Blumea lacera showed an uncompetitive inhibition mode for acetylcholinesterase. Smilax guianensis (Smilacaceae) and Byttneria pilosa (Malvaceae) were also found to show moderate AChE inhibition (IC50, 205 ± 31 and 221 ± 2 µg/mL, respectively), although no significant BChE inhibitory effect was observed for extracts from these plant species. Among others, Thunbergia grandiflora (Acanthaceae) and Mikania micrantha (Compositae) were found to display noticeable AChE (IC50, 252 ± 22 µg/mL) and BChE (IC50, 314 ± 15 µg/mL) inhibitory effects, respectively. Molecular docking experiment suggested that compounds 5-hydroxy-3,6,7,3′,4′-pentamethoxyflavone (BL4) and kaempferol-3-O-α-L-rhamnopyranosyl-(1⟶6)-β-D-glucopyranoside (BL5) from Blumea lacera bound stably to the binding groove of the AChE and BChE by hydrogen-bond interactions, respectively. Therefore, these compounds could be candidates for cholinesterase inhibitors. The present findings demonstrated that Blumea lacera and Cyclea barbata are interesting objects for further studies aiming at future therapeutics for Alzheimer's disease.
Collapse
|
17
|
Ak G, Zengin G, Ceylan R, Fawzi Mahomoodally M, Jugreet S, Mollica A, Stefanucci A. Chemical composition and biological activities of essential oils from
Calendula officinalis
L. flowers and leaves. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gunes Ak
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Ramazan Ceylan
- Physiology and Biochemistry Research Laboratory Deparment of Biology Science Faculty Selcuk University Konya Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences Faculty of Medicine and Health Sciences University of Mauritius Réduit Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences Faculty of Medicine and Health Sciences University of Mauritius Réduit Mauritius
| | - Adriano Mollica
- Department of Pharmacy University “G. d’Annunzio” of Chieti‐Pescara Chieti‐Pescara Italy
| | - Azzurra Stefanucci
- Department of Pharmacy University “G. d’Annunzio” of Chieti‐Pescara Chieti‐Pescara Italy
| |
Collapse
|
18
|
Hammoudi NEH, Sobhi W, Attoui A, Lemaoui T, Erto A, Benguerba Y. In silico drug discovery of Acetylcholinesterase and Butyrylcholinesterase enzymes inhibitors based on Quantitative Structure-Activity Relationship (QSAR) and drug-likeness evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Discovery, biological evaluation and molecular dynamic simulations of butyrylcholinesterase inhibitors through structure-based pharmacophore virtual screening. Future Med Chem 2021; 13:769-784. [PMID: 33759552 DOI: 10.4155/fmc-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Butyrylcholinesterase (BChE) is a crucial therapeutic target because it is associated with multiple pathological elements of Alzheimer's disease (AD). An integrated computational strategy was employed to exploit effective BChE inhibitors. Methods & results: Ten compounds derived from the Enamine database by structure-based pharmacophore virtual screening were further evaluated for biological activity; out of the ten, only five had an IC50 of less than 100 μM. Among these five compounds, a new molecule, 970180, presented the most potency against BChE, with an IC50 of 4.24 ± 0.16 μM, and acted as a mixed-type inhibitor. Molecular dynamic simulations and absorption, distribution, metabolism and excretion prediction further confirmed its high potential as a good candidate of BChE inhibitor. Furthermore, cytotoxicity of molecule 970180 was not observed at concentrations up to 50 μM, and the molecule also showed a prominent neuroprotective effect compared with tacrine at 25 and 50 μM. Conclusion: This study provides an effective structure-based pharmacophore virtual screening method to discover BChE inhibitors and provide new choices for the development of BChE inhibitors, which may be beneficial for AD patients.
Collapse
|
20
|
Silva LB, Nogara PA, Halmenschelager PT, Alvim JC, Silva FD, Feitosa SC, Rocha JBT, Martins MAP, Zanatta N, Bonacorso HG. 7-Amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes]: Synthesis and cholinesterase inhibitory activity of structurally modified tacrines. Bioorg Chem 2021; 108:104649. [PMID: 33517001 DOI: 10.1016/j.bioorg.2021.104649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Five new examples of 9,10-chloro(bromo)-7-amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes] - in which cycloalkanes = cyclopentane, cyclohexane, and cycloheptane - were synthesized at yields of 42-56%, using a sequential one-pot two-step cyclocondensation reaction of three different scaffolds of 2-aminobenzonitriles and the respective spiro[chroman-2,1'-cycloalkan]-4-ones, and using AlCl3 as the catalyst in a solvent-free method. Subsequently, the five new spirochromeno-quinolines and nine quinolines previously published by us (14 modified tacrine scaffolds) were subjected to AChE and BChE inhibitory activity evaluation. The molecule containing a spirocyclopentane derivative had the highest AChE and BChE inhibitory activity (IC50 = 3.60 and 4.40 μM, respectively), and in general, the non-halogenated compounds were better inhibitors of AChE and BChE than the halogenated molecules. However, the inhibitory potency of compounds 3a-n was weaker than that of tacrine. By molecular docking simulations, it was found that the size of the spirocarbocyclic moieties is inversely proportional to the inhibitory activity of the cholinesterases, probably because an increase in the size of the spirocyclic component sterically hindered the interaction of tacrine derivatives with the active site of tested cholinesterases. The findings obtained here may help in the design and development of new anticholinesterase drugs.
Collapse
Affiliation(s)
- Letícia B Silva
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Pablo A Nogara
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Paula T Halmenschelager
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Jéssica C Alvim
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Fernanda D'A Silva
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Sarah C Feitosa
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João B T Rocha
- Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
21
|
Vignaux PA, Minerali E, Lane TR, Foil DH, Madrid PB, Puhl AC, Ekins S. The Antiviral Drug Tilorone Is a Potent and Selective Inhibitor of Acetylcholinesterase. Chem Res Toxicol 2021; 34:1296-1307. [PMID: 33400519 DOI: 10.1021/acs.chemrestox.0c00466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acetylcholinesterase (AChE) is an important drug target in neurological disorders like Alzheimer's disease, Lewy body dementia, and Parkinson's disease dementia as well as for other conditions like myasthenia gravis and anticholinergic poisoning. In this study, we have used a combination of high-throughput screening, machine learning, and docking to identify new inhibitors of this enzyme. Bayesian machine learning models were generated with literature data from ChEMBL for eel and human AChE inhibitors as well as butyrylcholinesterase inhibitors (BuChE) and compared with other machine learning methods. High-throughput screens for the eel AChE inhibitor model identified several molecules including tilorone, an antiviral drug that is well-established outside of the United States, as a newly identified nanomolar AChE inhibitor. We have described how tilorone inhibits both eel and human AChE with IC50's of 14.4 nM and 64.4 nM, respectively, but does not inhibit the closely related BuChE IC50 > 50 μM. We have docked tilorone into the human AChE crystal structure and shown that this selectivity is likely due to the reliance on a specific interaction with a hydrophobic residue in the peripheral anionic site of AChE that is absent in BuChE. We also conducted a pharmacological safety profile (SafetyScreen44) and kinase selectivity screen (SelectScreen) that showed tilorone (1 μM) only inhibited AChE out of 44 toxicology target proteins evaluated and did not appreciably inhibit any of the 485 kinases tested. This study suggests there may be a potential role for repurposing tilorone or its derivatives in conditions that benefit from AChE inhibition.
Collapse
Affiliation(s)
- Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Eni Minerali
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
22
|
Synthesis of novel 1,2,3 triazole derivatives and assessment of their potential cholinesterases, glutathione S-transferase enzymes inhibitory properties: An in vitro and in silico study. Bioorg Chem 2020; 107:104606. [PMID: 33476865 DOI: 10.1016/j.bioorg.2020.104606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
In this study, new 1,2,3-triazole derivatives containing chalcone core (1-7) were synthesized. Obtained compounds were characterized by IR, 1H NMR, 13C NMR, and mass studies. Characterized compounds (1-7) inhibitory effects were tested against the glutathione S-transferase (GST), acetylcholinesterase (AChE), and Butyrylcholinesterase (BChE). Their Ki values were in the range of 5.88-11.13 µM on AChE, 5.08-15.12 µM on BChE, and 9.82-13.22 µM on GST. Remarkable inhibitory effects were obtained against three tested metabolic enzymes. Also, binding scores of the best-inhibitors against AChE, BChE, and GST enzymes were detected as -9.969 kcal/mol, -10.672 kcal/mol, and -8.832 kcal/mol, respectively. Isoindoline-1,3-dione and benzothiophene moieties played a critical role in the inhibition of AChE and BChE enzymes, respectively. Phenylene and triazole moieties had the most important interactions for inhibition of the GST enzyme. Therefore, in vivo and in silico results indicated that these compounds can be considered in drug design processes for the treatment of some diseases including Alzheimer's disease (AD), leukemia, and some type of cancer.
Collapse
|
23
|
Dall’Acqua S, Sinan KI, Ferrarese I, Sut S, Bene K, Mahomoodally MF, Bibi Sadeer N, Ak G, Zengin G. Chromatographic Separation of Breynia retusa (Dennst.) Alston Bark, Fruit and Leaf Constituents from Bioactive Extracts. Molecules 2020; 25:molecules25235537. [PMID: 33255853 PMCID: PMC7728322 DOI: 10.3390/molecules25235537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Stefania Sut
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis Campus, University of Padova, 35020 Legnaro, Italy;
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, 02 BP 801 Abidjan 02, Université Nangui Abrogoua, CI-YM. IV98 Abidjan, Ivory Cost;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80832 Réduit, Mauritius;
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (G.A.)
- Correspondence: (S.D.); (M.F.M.); (G.Z.)
| |
Collapse
|
24
|
Choubey PK, Tripathi A, Sharma P, Shrivastava SK. Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorg Med Chem 2020; 28:115721. [DOI: 10.1016/j.bmc.2020.115721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
|
25
|
Li Q, Xing S, Chen Y, Liao Q, Xiong B, He S, Lu W, Liu Y, Yang H, Li Q, Feng F, Liu W, Chen Y, Sun H. Discovery and Biological Evaluation of a Novel Highly Potent Selective Butyrylcholinsterase Inhibitor. J Med Chem 2020; 63:10030-10044. [PMID: 32787113 DOI: 10.1021/acs.jmedchem.0c01129] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To discover novel BChE inhibitors, a hierarchical virtual screening protocol followed by biochemical evaluation was applied. The most potent compound 8012-9656 (eqBChE IC50 = 0.18 ± 0.03 μM, hBChE IC50 = 0.32 ± 0.07 μM) was purchased and synthesized. It inhibited BChE in a noncompetitive manner and could occupy the binding pocket forming diverse interactions with the target. 8012-9656 was proven to be safe in vivo and in vitro and showed comparable performance in ameliorating the scopolamine-induced cognition impairment to tacrine. Additionally, treatment with 8012-9656 could almost entirely recover the Aβ1-42 (icv)-impaired cognitive function to the normal level and showed better behavioral performance than donepezil. The evaluation of the Aβ1-42 total amount confirmed its anti-amyloidogenic profile. Moreover, 8012-9656 possessed blood-brain barrier (BBB) penetrating ability, a long T1/2, and low intrinsic clearance. Hence, the novel potential BChE inhibitor 8012-9656 can be considered as a promising lead compound for further investigation of anti-AD agents.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Weixuan Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hongyu Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceutical Science College, No. 4 Meicheng Road, Huai'an 223003, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
26
|
Zhou Y, Hu Y, Lu X, Yang H, Li Q, Du C, Chen Y, Hong KH, Sun H. Discovery of a Selective 6-Hydroxy-1, 4-Diazepan-2-one Containing Butyrylcholinesterase Inhibitor by Virtual Screening and MM-GBSA Rescoring. Dose Response 2020; 18:1559325820938526. [PMID: 32636723 PMCID: PMC7324897 DOI: 10.1177/1559325820938526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia characterized by the loss of cognitive abilities through the death of central neuronal cells. In this study, structure-based virtual screens of 2 central nervous system-targeted libraries followed by molecular mechanics/generalized born surface area rescoring were performed to discover novel, selective butyrylcholinesterase (BChE) inhibitors, which are one of the most effective therapeutic strategies for the treatments in late-stage AD. Satisfyingly, compound 5 was identified as a highly selective low micromolar inhibitor of BChE (BChE IC50 = 1.4 μM). The binding mode prediction and kinetic analysis were performed to obtain detailed information about compound 5. Besides, a preliminary structure–activity relationship investigation of compound 5 was carried out for further development of the series. The present results provided a valuable chemical template with a novel scaffold for the development of selective BChE inhibitors.
Collapse
Affiliation(s)
- You Zhou
- College of Biotechnology, Southwest University, Chongqing, China
| | - Yanyu Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongyu Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qihang Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Discovery of Selective Butyrylcholinesterase (BChE) Inhibitors through a Combination of Computational Studies and Biological Evaluations. Molecules 2019; 24:molecules24234217. [PMID: 31757047 PMCID: PMC6930573 DOI: 10.3390/molecules24234217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022] Open
Abstract
As there are increased levels and activity of butyrylcholiesterase (BChE) in the late stage of Alzheimer’s disease (AD), development of selective BChE inhibitors is of vital importance. In this study, a workflow combining computational technologies and biological assays were implemented to identify selective BChE inhibitors with new chemical scaffolds. In particular, a pharmacophore model served as a 3D search query to screen three compound collections containing 3.0 million compounds. Molecular docking and cluster analysis were performed to increase the efficiency and accuracy of virtual screening. Finally, 15 compounds were retained for biological investigation. Results revealed that compounds 8 and 18 could potently and highly selectively inhibit BChE activities (IC50 values < 10 μM on human BChE, selectivity index BChE > 30). These active compounds with novel scaffolds provided us with a good starting point to further design potent and selective BChE inhibitors, which may be beneficial for the treatment of AD.
Collapse
|