1
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023:1-14. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
2
|
Tokalı FS, Taslimi P, Tuzun B, Karakuş A, Sadeghian N, Gulçin İ. Novel Quinazolinone Derivatives: Potential Synthetic Analogs for the Treatment of Glaucoma, Alzheimer's Disease and Diabetes Mellitus. Chem Biodivers 2023; 20:e202301134. [PMID: 37695993 DOI: 10.1002/cbdv.202301134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85-94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR, 13 C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I-II (hCA I-II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26-93.42±9.44 nM for AChE, 8.48±0.92-25.84±2.59 nM for BChE, 66.17±5.16-818.06±44.41 for α-Glu, 2.56±0.26-88.23±9.72 nM for hCA I, and 1.68±0.14-85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, 36100, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - Burak Tuzun
- Departmentof Plant and Animal Production, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkiye
| | - Ahmet Karakuş
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240-, Erzurum, Turkiye
| |
Collapse
|
3
|
Özmen ÜÖ, Tüzün B, Ayan EB, Çevrimli BS. Eco-friendly and potential colin esterase enzyme inhibitor agent sulfonyl hydrazone series: Synthesis, Bioactivity Screening, DFT, ADME Properties, and Molecular Docking Study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Pei X, Fang Y, Gu H, Zheng S, Bin X, Wang F, He M, Lu S, Chen X. A turn-on fluorescent probe based on ESIPT and AIEE mechanisms for the detection of butyrylcholinesterase activity in living cells and in non-alcoholic fatty liver of zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122044. [PMID: 36327810 DOI: 10.1016/j.saa.2022.122044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are two important cholinesterase enzymes in human metabolism which are closely related to various diseases of the liver. BChE and AChE are difficult to be distinguished due to their similarity in biochemical properties. Therefore, developing BChE-specific probes with high sensitivity and low background reading is desirable for the relevant biological applications. Herein, we reported the design and synthesis of a fluorescent probe HBT-BChE for biological detection and imaging of BChE. The probe is triggered by BChE-mediated hydrolysis, releasing a fluorophore that holds AIEE and ESIPT properties with large Stokes shift (>100 nm), rendering the probe features of low background interference and high sensitivity. The probe can also distinguish BChE from AChE with a low detection limit of 7.540 × 10-4 U/mL. Further in vitro studies have shown the ability of HBT-BChE to detect intracellular BChE activity, as well as to evaluate the efficiency of the BChE inhibitor. More importantly, the in vivo studies of imaging the BChE activity level in liver tissues using zebrafish as the model animal demonstrated the potential of HBT-BChE as a powerful tool for non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiangyu Pei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - YuHang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Xinni Bin
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Mingfang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Pseudo-irreversible butyrylcholinesterase inhibitors: Structure-activity relationships, computational and crystallographic study of the N-dialkyl O-arylcarbamate warhead. Eur J Med Chem 2023; 247:115048. [PMID: 36586299 DOI: 10.1016/j.ejmech.2022.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.
Collapse
|
6
|
Mukherjee RP, Yow GY, Sarakbi S, Menegatti S, Gurgel PV, Carbonell RG, Bobay BG. Integrated in silico and experimental discovery of trimeric peptide ligands targeting Butyrylcholinesterase. Comput Biol Chem 2023; 102:107797. [PMID: 36463785 DOI: 10.1016/j.compbiolchem.2022.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Butyrylcholinesterase (BChE) is recognized as a high value biotherapeutic in the treatment of Alzheimer's disease and drug addiction. This study presents the rational design and screening of an in-silico library of trimeric peptides against BChE and the experimental characterization of peptide ligands for purification. The selected peptides consistently afforded high BChE recovery (> 90 %) and purity, yielding up to a 1000-fold purification factor. This study revealed a marked anti-correlated conformational movement governed by the ionic strength and pH of the aqueous environment, which ultimately controls BChE binding and release during chromatographic purification; and highlighted the role of residues within and allosteric to the catalytic triad of BChE in determining biorecognition, thus providing useful guidance for ligand design and affinity maturation.
Collapse
Affiliation(s)
- Rudra Palash Mukherjee
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | - Stefano Menegatti
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Patrick V Gurgel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; Prometic Bioseparations Ltd, Cambridge CB23 7AJ, UK
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA; William R. Kenan, Jr. Institute for Engineering, Technology and Science North Carolina State University, Raleigh, NC 27606, USA.
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Radiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Miličević A, Šinko G. Evaluation of the Key Structural Features of Various Butyrylcholinesterase Inhibitors Using Simple Molecular Descriptors. Molecules 2022; 27:molecules27206894. [PMID: 36296489 PMCID: PMC9610766 DOI: 10.3390/molecules27206894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed several QSAR models based on simple descriptors (such as topological and constitutional) to estimate butyrylcholinesterase (BChE) inhibition potency, pKi (or pIC50), of a set of 297 (289 after exclusion of outliers) structurally different compounds. The models were similar to the best model that we obtained previously for acetylcholinesterase AChE and were based on the valence molecular connectivity indices of second and third order (2χv and 3χv), the number of aliphatic hydroxyl groups (nOH), AlogP Ghose-Crippen octanol-water partition coeff. (logP), and O-060-atom-centred fragments (Al-O-Ar, Ar-O-Ar, R..O..R and R-O-C=X). The best models with two and three descriptors yielded r = 0.787 and S.E. = 0.89, and r = 0.827 and S.E. = 0.81, respectively. We also correlated nine scoring functions, calculated for 20 ligands whose complexes with BChE we found in the Protein Data Bank as crystal structures to pKi (or pIC50). The best correlations yielded PLP1 and PLP2 (Piecewise Linear Pairwise potential functions) with r = 0.619 and 0.689, respectively. Correlation with certain simple topological and constitutional descriptors yielded better results, e.g., 3χv (r = 0.730), on the same set of compounds (N = 20).
Collapse
|
8
|
Yang Y, Zhang L, Wang J, Cao Y, Li S, Qin W, Liu Y. Diagnosis of Alzheimer's Disease and In Situ Biological Imaging via an Activatable Near-Infrared Fluorescence Probe. Anal Chem 2022; 94:13498-13506. [PMID: 36121878 DOI: 10.1021/acs.analchem.2c02627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that makes the brain nervous system degenerate rapidly and is accompanied by some special cognitive and behavioral dysfunction. Recently, butyrylcholinesterase (BChE) was reported as an important enzyme, whose activity can provide predictive value for timely discovery and diagnosis of AD. Therefore, it is indispensable to design a detection tool for selective and rapid response toward BChE. In this study, we developed a novel near-infrared fluorescent probe (Chy-1) for the detection of BChE activity. An excellent sensitivity, good biocompatibility, and lower limit of detection (LOD) of 0.12 ng/mL made the probe extremely specific for BChE, which was successfully used in biological imaging. What is more, Chy-1 can not only clearly distinguish tumor from normal cells but also forms a clear boundary between the normal and cancer tissues due to the obvious difference in fluorescence intensity produced via in situ spraying. Most important of all, Chy-1 was also successfully applied to track the BChE activity in AD mouse models. Based on this research, the novel probe may be a powerful tool for clinical diagnosis and therapy of tumor and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing400037, P. R. China
| | - Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Shuyan Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P. R. China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing400010, P.R. China
| |
Collapse
|
9
|
Inhibition of Cholinesterases by Benzothiazolone Derivatives. Processes (Basel) 2022. [DOI: 10.3390/pr10091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thirteen benzothiazolone derivatives (M1–M13) were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs) and monoamine oxidases (MAOs). All the compounds inhibited ChEs more effectively than MAOs. In addition, most of the compounds showed higher inhibitory activities against butyrylcholinesterase (BChE) than acetylcholinesterase (AChE). Compound M13 most potently inhibited BChE with an IC50 value of 1.21 μM, followed by M2 (IC50 = 1.38 μM). Compound M2 had a higher selectivity index (SI) value for BChE over AChE (28.99) than M13 (4.16). The 6-methoxy indole group of M13 was expected to have a greater effect on BChE inhibitory activity than the other groups. Kinetics and reversibility tests showed that M13 was a reversible noncompetitive BChE inhibitor with a Ki value of 1.14 ± 0.21 μM. In a docking simulation, M13 is predicted to form a hydrogen bond with the backbone carbonyl group of Ser287 of BChE through its methoxy indole moiety and π−π interactions between its benzothiazolone group and the side chain of Trp82 with the five-membered pyrrole ring and with the six-membered benzene ring. From these results, it is suggested that M13 is a BChE inhibitor and a potential candidate agent for the treatment of Alzheimer’s disease.
Collapse
|
10
|
Titov AA, Kobzev MS, Catto M, Candia MD, Gambacorta N, Denora N, Pisani L, Nicolotti O, Borisova TN, Varlamov AV, Voskressensky LG, Altomare CD. Away from Flatness: Unprecedented Nitrogen-Bridged Cyclopenta[ a]indene Derivatives as Novel Anti-Alzheimer Multitarget Agents. ACS Chem Neurosci 2021; 12:340-353. [PMID: 33395258 DOI: 10.1021/acschemneuro.0c00706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nature-inspired, bridged polycyclic molecules share low similarity with currently available drugs, containing preferentially planar and/or achiral moieties. This "Escape from Flatland" scenario, aimed at exploring pharmacological properties of atypical molecular scaffolds, finds interest in synthetic routes leading to tridimensional-shaped molecules. Herein we report on the synthesis of N-bridged cyclopenta[a]indene derivatives, achieved through microwave-assisted thermal rearrangement of allene 3-benzazecines with high diastereoselectivity. The biological evaluation disclosed selective inhibition of human acetylcholinesterase or butyrylcholinesterase, depending on the substitution around the molecular core, which was rationalized by means of docking simulations. The most potent BChE inhibitor 31 was effective in neuroprotection from glutamatergic excitotoxicity and displayed low intrinsic cytotoxicity and good brain penetration. Overall, compound 31 and its close congeners 34 and 35 acted as multitarget agents addressing different biological events involved in neurodegeneration, particularly in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Alexander A. Titov
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Maxim S. Kobzev
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Tatiana N. Borisova
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Alexey V. Varlamov
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Majid H, Silva FV. Improvement of butyrylcholinesterase enzyme inhibition and medicinal properties of extracts of Aristotelia serrata leaves by ultrasound extraction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
A Bioorthogonally Synthesized and Disulfide-Containing Fluorescence Turn-On Chemical Probe for Measurements of Butyrylcholinesterase Activity and Inhibition in the Presence of Physiological Glutathione. Catalysts 2020. [DOI: 10.3390/catal10101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a biomarker in human blood. Aberrant BChE activity has been associated with human diseases. Here we developed a fluorescence resonance energy transfer (FRET) chemical probe to specifically quantify BChE activity in serum, while simultaneously discriminating against glutathione (GSH). The FRET chemical probe 11 was synthesized from a key trifunctional bicyclononyne exo-6 and derivatives of 5-(2-aminoethylamino)-1-naphthalenesulfonic acid (EDANS) and 4-[4-(dimethylamino)phenylazo]benzoic acid (DABCYL). EDANS fluorescence visualization and kinetic analysis of 11 in the presence of diverse compounds confirmed the outstanding reactivity and specificity of 11 with thiols. The thiol-dependent fluorescence turn-on property of 11 was attributed to a general base-catalyzed SN2 nucleophilic substitution mechanism and independent of metal ions. Moreover, all thiols, except GSH, reacted swiftly with 11. Kinetic studies of 11 in the presence of covalently modified GSH derivatives corroborated that the steric hindrance of 11 imposing on GSH was the likely cause of the distinguished reactivity. Since GSH commonly interferes in assays measuring BChE activity in blood samples, the 11-based fluorescent assay was employed to directly quantify BChE activity without GSH interference, and delivered a linear range of 4.3–182.2 U L−1 for BChE activity with detection limit of 4.3 U L−1, and accurately quantified serum BChE activity in the presence of 10 μM GSH. Finally, the 11-based assay was exploited to determine Ki of 5 nM for tacrine inhibition on BChE catalysis. We are harnessing the modulated characteristics of 6 to synthesize advanced chemical probes able to more sensitively screen for BChE inhibitors and quantify BChE activity in serum.
Collapse
|
13
|
Zueva IV, Lushchekina SV, Daudé D, Chabrière E, Masson P. Steady-State Kinetics of Enzyme-Catalyzed Hydrolysis of Echothiophate, a P-S Bonded Organophosphorus as Monitored by Spectrofluorimetry. Molecules 2020; 25:molecules25061371. [PMID: 32192230 PMCID: PMC7144395 DOI: 10.3390/molecules25061371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
Enzyme-catalyzed hydrolysis of echothiophate, a P–S bonded organophosphorus (OP) model, was spectrofluorimetrically monitored, using Calbiochem Probe IV as the thiol reagent. OP hydrolases were: the G117H mutant of human butyrylcholinesterase capable of hydrolyzing OPs, and a multiple mutant of Brevundimonas diminuta phosphotriesterase, GG1, designed to hydrolyze a large spectrum of OPs at high rate, including V agents. Molecular modeling of interaction between Probe IV and OP hydrolases (G117H butyrylcholinesterase, GG1, wild types of Brevundimonas diminuta and Sulfolobus solfataricus phosphotriesterases, and human paraoxonase-1) was performed. The high sensitivity of the method allowed steady-state kinetic analysis of echothiophate hydrolysis by highly purified G117H butyrylcholinesterase concentration as low as 0.85 nM. Hydrolysis was michaelian with Km = 0.20 ± 0.03 mM and kcat = 5.4 ± 1.6 min−1. The GG1 phosphotriesterase hydrolyzed echothiophate with a high efficiency (Km = 2.6 ± 0.2 mM; kcat = 53400 min−1). With a kcat/Km = (2.6 ± 1.6) × 107 M−1min−1, GG1 fulfills the required condition of potential catalytic bioscavengers. quantum mechanics/molecular mechanics (QM/MM) and molecular docking indicate that Probe IV does not interact significantly with the selected phosphotriesterases. Moreover, results on G117H mutant show that Probe IV does not inhibit butyrylcholinesterase. Therefore, Probe IV can be recommended for monitoring hydrolysis of P–S bonded OPs by thiol-free OP hydrolases.
Collapse
Affiliation(s)
- Irina V. Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov str. 8, 420088 Kazan, Russia;
| | - Sofya V. Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str 4, 119334 Moscow, Russia;
| | - David Daudé
- Gene&GreenTK, HU Méditerranée Infection, Jean Moulin Blvd 19–21, 13005 Marseille, France;
| | - Eric Chabrière
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 15005 Marseille, France;
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, Kremlevskaya str 18, 480002 Kazan, Russia
- Correspondence: ; Tel.: +7-96-5581-0473
| |
Collapse
|