1
|
Farhadi S, Taghizadeh M, Mousavi-Niri N, Nemati F. Comparative Analysis of Leishmania major Nucleoside Hydrolases Toward Selecting Multi-target Strategy. Acta Parasitol 2024; 69:332-342. [PMID: 38085461 DOI: 10.1007/s11686-023-00748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/06/2023] [Indexed: 05/01/2024]
Abstract
PURPOSE Leishmania causes multiple types of leishmaniasis in different parts of the world. It has a lack of metabolic machine to produce purine bases. Therefore, the parasite produces purine bases through the breakdown of nutritional nucleotides and it makes the nucleoside hydrolases (NHs) good drug targets. They have different substrate-preferring (SP) types. Our objectives were modeling and comparative analysis of these protein structures for Leishmania major. METHOD In this work, available sequences for all SP types of L. major NH enzymes including inosine-uridine preferring NH (IUNH), inosine-guanosine preferring NH (IGNH), and inosine-adenosine-guanosine preferring NH (IAGNH) were used to make 24 structural models via SWISS-MODEL and LOMETS. After evaluating the structural models, three enzyme structures were finalized and used to analyze substrate-binding pockets. RESULTS The three SP types of L. major NH enzymes that can breakdown purine nucleosides were highly different in terms of sequence, structure, and profile of interacting residues within the substrate-binding pockets. In this study, new enzyme structures have been presented for three SP types and they have been compared in different aspects and it indicated that they were very different from each other. CONCLUSION Although, previously indicated that from these three SP types in genera other than Leishmania, the role of IGNH and IAGNH was greater than IUNH in supplying purine bases, till this work, just IUNH has been structurally studied and used in drug-design investigations for Leishmania. Therefore, we are offering to use all three SP types of NHs as multi-target strategy in anti-leishmaniosis drug-design studies.
Collapse
Affiliation(s)
- Samaneh Farhadi
- Biotechnology Department, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Mohammad Taghizadeh
- Biotechnology Department, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| | - Neda Mousavi-Niri
- Biotechnology Department, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Fahimeh Nemati
- Biotechnology Department, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| |
Collapse
|
2
|
Yu J, Yuan H, Guo J, Dong Z, Li S, Fu Q, Aode B, Baoyin S, Bao L, Wu L. Combining multi-omics analysis to identify host-targeted targets for the control of Brucella infection. Microb Biotechnol 2023; 16:2345-2366. [PMID: 37882474 PMCID: PMC10686141 DOI: 10.1111/1751-7915.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 10/27/2023] Open
Abstract
Human infections caused by Brucella (called brucellosis) are among the most common zoonoses worldwide with an estimated 500,000 cases each year. Since chronic Brucella infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As a facultative intracellular bacterium, Brucella is strictly parasitic in the host cell. Here, we performed proteomic and transcriptomic and metabolomic analyses on Brucella infected patients, mice and cells that provided an extensive "map" of physiological changes in brucellosis patients and characterized the metabolic pathways essential to the response to infection, as well as the associated cellular response and molecular mechanisms. This is the first report utilizing multi-omics analysis to investigate the global response of proteins and metabolites associated with Brucella infection, and the data can provide a comprehensive insight to understand the mechanism of Brucella infection. We demonstrated that Brucella increased nucleotide synthesis in the host, consistent with increased biomass requirement. We also identified IMPDH2, a key regulatory complex that controls nucleotide synthesis during Brucella infection. Pharmacological targeting of IMPDH2, the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits B. abortus growth both in vitro and in vivo. Through screening a library of natural products, we identified oxymatrine, an alkaloid obtained primarily from Sophora roots, is a novel and selective IMPDH2 inhibitor. In further in vitro bacterial inhibition assays, oxymatrine effectively inhibited the growth of B. abortus, which was impaired by exogenous supplementation of guanosine, a salvage pathway of purine nucleotides. This moderately potent, structurally novel compound may provide clues for further design and development of efficient IMPDH2 inhibitors and also demonstrates the potential of natural compounds from plants against Brucella.
Collapse
Affiliation(s)
- Jiuwang Yu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Hongwei Yuan
- Department of PathologyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Jiarong Guo
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Zhiheng Dong
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Sha Li
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Quan Fu
- Department of LaboratoryAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Bilige Aode
- Department of Mongolian MedicineInner Mongolia Xilin Gol League Mongolian Medical HospitalXilinhaoteChina
| | - Sachula Baoyin
- Mongolia Medical SchoolInner Mongolia Medical UniversityHohhotChina
| | - Lidao Bao
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Lan Wu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| |
Collapse
|
3
|
Corman HN, McNamara CW, Bakowski MA. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023; 11:2845. [PMID: 38137989 PMCID: PMC10745741 DOI: 10.3390/microorganisms11122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmaniasis is a group of vector-borne, parasitic diseases caused by over 20 species of the protozoan Leishmania spp. The three major disease classifications, cutaneous, visceral, and mucocutaneous, have a range of clinical manifestations from self-healing skin lesions to hepatosplenomegaly and mucosal membrane damage to fatality. As a neglected tropical disease, leishmaniasis represents a major international health challenge, with nearly 350 million people living at risk of infection a year. The current chemotherapeutics used to treat leishmaniasis have harsh side effects, prolonged and costly treatment regimens, as well as emerging drug resistance, and are predominantly used for the treatment of visceral leishmaniasis. There is an undeniable need for the identification and development of novel chemotherapeutics targeting cutaneous leishmaniasis (CL), largely ignored by concerted drug development efforts. CL is mostly non-lethal and the most common presentation of this disease, with nearly 1 million new cases reported annually. Recognizing this unaddressed need, substantial yet fragmented progress in early drug discovery efforts for CL has occurred in the past 15 years and was outlined in this review. However, further work needs to be carried out to advance early discovery candidates towards the clinic. Importantly, there is a paucity of investment in the translation and development of therapies for CL, limiting the emergence of viable solutions to deal with this serious and complex international health problem.
Collapse
Affiliation(s)
- Hannah N. Corman
- Calibr at Scripps Research, La Jolla, CA 92037, USA; (C.W.M.); (M.A.B.)
| | | | | |
Collapse
|
4
|
Challapa-Mamani MR, Tomás-Alvarado E, Espinoza-Baigorria A, León-Figueroa DA, Sah R, Rodriguez-Morales AJ, Barboza JJ. Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Trop Med Infect Dis 2023; 8:457. [PMID: 37888585 PMCID: PMC10610989 DOI: 10.3390/tropicalmed8100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Leishmaniasis, a disease caused by Leishmania parasites and transmitted via sandflies, presents in two main forms: cutaneous and visceral, the latter being more severe. With 0.7 to 1 million new cases each year, primarily in Brazil, diagnosing remains challenging due to diverse disease manifestations. Traditionally, the identification of Leishmania species is inferred from clinical and epidemiological data. Advances in disease management depend on technological progress and the improvement of parasite identification programs. Current treatments, despite the high incidence, show limited efficacy due to factors like cost, toxicity, and lengthy regimens causing poor adherence and resistance development. Diagnostic techniques have improved but a significant gap remains between scientific progress and application in endemic areas. Complete genomic sequence knowledge of Leishmania allows for the identification of therapeutic targets. With the aid of computational tools, testing, searching, and detecting affinity in molecular docking are optimized, and strategies that assess advantages among different options are developed. The review focuses on the use of molecular docking and molecular dynamics (MD) simulation for drug development. It also discusses the limitations and advancements of current treatments, emphasizing the importance of new techniques in improving disease management.
Collapse
Affiliation(s)
- Mabel R. Challapa-Mamani
- Escuela de Medicina, Universidad Cesar Vallejo, Trujillo 13007, Peru;
- Sociedad Científica de Estudiantes de Medicina de la Universidad César Vallejo, Trujillo 13007, Peru
| | - Eduardo Tomás-Alvarado
- Hospital General Regional 17, Instituto Mexicano del Seguro Social, Cancún 75533, Mexico;
| | | | | | - Ranjit Sah
- Department of Clinical Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal;
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima 150152, Peru;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 350000, Lebanon
| | | |
Collapse
|
5
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Tassone G, Mazzorana M, Mangani S, Petricci E, Cini E, Giannini G, Pozzi C, Maramai S. Structural Characterization of Human Heat Shock Protein 90 N-Terminal Domain and Its Variants K112R and K112A in Complex with a Potent 1,2,3-Triazole-Based Inhibitor. Int J Mol Sci 2022; 23:ijms23169458. [PMID: 36012721 PMCID: PMC9409116 DOI: 10.3390/ijms23169458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that stabilizes client proteins in a folded and functional state. It is composed of two identical and symmetrical subunits and each monomer consists of three domains, the N-terminal (NTD), the middle (MD), and the C-terminal domain (CTD). Since the chaperone activity requires ATP hydrolysis, molecules able to occupy the ATP-binding pocket in the NTD act as Hsp90 inhibitors, leading to client protein degradation and cell death. Therefore, human Hsp90 represents a validated target for developing new anticancer drugs. Since protozoan parasites use their Hsp90 to trigger important transitions between different stages of their life cycle, this protein also represents a profitable target in anti-parasite drug discovery. Nevertheless, the development of molecules able to selectively target the ATP-binding site of protozoan Hsp90 is challenging due to the high homology with the human Hsp90 NTD (hHsp90-NTD). In a previous work, a series of potent Hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold was developed. The most promising inhibitor of the series, JMC31, showed potent Hsp90 binding and antiproliferative activity in NCI-H460 cells in the low-nanomolar range. In this work, we present the structural characterization of hHsp90-NTD in complex with JMC31 through X-ray crystallography. In addition, to elucidate the role of residue 112 on the ligand binding and its exploitability for the development of selective inhibitors, we investigated the crystal structures of hHsp90-NTD variants (K112R and K112A) in complex with JMC31.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Correspondence: (M.M.); (C.P.); Tel.: +44-01235-778643 (M.M.); +39-0577-232132 (C.P.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Cini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | | | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
- Correspondence: (M.M.); (C.P.); Tel.: +44-01235-778643 (M.M.); +39-0577-232132 (C.P.)
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
7
|
Peña-Guerrero J, Fernández-Rubio C, Burguete-Mikeo A, El-Dirany R, García-Sosa AT, Nguewa P. Discovery and Validation of Lmj_04_BRCT Domain, a Novel Therapeutic Target: Identification of Candidate Drugs for Leishmaniasis. Int J Mol Sci 2021; 22:ijms221910493. [PMID: 34638841 PMCID: PMC8508789 DOI: 10.3390/ijms221910493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Since many of the currently available antileishmanial treatments exhibit toxicity, low effectiveness, and resistance, search and validation of new therapeutic targets allowing the development of innovative drugs have become a worldwide priority. This work presents a structure-based drug discovery strategy to validate the Lmj_04_BRCT domain as a novel therapeutic target in Leishmania spp. The structure of this domain was explored using homology modeling, virtual screening, and molecular dynamics studies. Candidate compounds were validated in vitro using promastigotes of Leishmania major, L. amazonensis, and L. infantum, as well as primary mouse macrophages infected with L. major. The novel inhibitor CPE2 emerged as the most active of a group of compounds against Leishmania, being able to significantly reduce the viability of promastigotes. CPE2 was also active against the intracellular forms of the parasites and significantly reduced parasite burden in murine macrophages without exhibiting toxicity in host cells. Furthermore, L. major promastigotes treated with CPE2 showed significant lower expression levels of several genes (α-tubulin, Cyclin CYCA, and Yip1) related to proliferation and treatment resistance. Our in silico and in vitro studies suggest that the Lmj_04_BRCT domain and its here disclosed inhibitors are new potential therapeutic options against leishmaniasis.
Collapse
Affiliation(s)
- José Peña-Guerrero
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Aroia Burguete-Mikeo
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Rima El-Dirany
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
| | - Alfonso T. García-Sosa
- Department of Molecular Technology, Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, E-31008 Pamplona, Spain; (J.P.-G.); (C.F.-R.); (A.B.-M.); (R.E.-D.)
- Correspondence: (A.T.G.-S.); (P.N.); Tel.: +372-737-5270 (A.T.G.-S.); +34-948-425-600 (ext. 6434) (P.N.)
| |
Collapse
|
8
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
9
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
10
|
Bassanini I, Parapini S, Ferrandi EE, Gabriele E, Basilico N, Taramelli D, Sparatore A. Design, Synthesis and In Vitro Investigation of Novel Basic Celastrol Carboxamides as Bio-Inspired Leishmanicidal Agents Endowed with Inhibitory Activity against Leishmania Hsp90. Biomolecules 2021; 11:56. [PMID: 33466300 PMCID: PMC7824787 DOI: 10.3390/biom11010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The natural triterpene celastrol (CE) is here used as lead compound for the design and synthesis of a panel of eleven CE carboxamides that were tested in vitro for their growth inhibitory activity against Leishmania infantum and L.tropica parasites. Among them, in vitro screening identified four basic CE carboxamides endowed with nanomolar leishmanicidal activity, against both the promastigotes and the intramacrophage Leishmania amastigotes forms. These compounds also showed low toxicity toward two human (HMEC-1 and THP-1) and one murine (BMDM) cell lines. Interestingly, the most selective CE analogue (compound 3) was also endowed with the ability to inhibit the ATPase activity of the Leishmania protein chaperone Hsp90 as demonstrated by the in vitro assay conducted on a purified, full-length recombinant protein. Preliminary investigations by comparing it with the naturally occurring Hsp90 active site inhibitor Geldanamycin (GA) in two different in vitro experiments were performed. These promising results set the basis for a future biochemical investigation of the mode of interaction of celastrol and CE-inspired compounds with Leishmania Hsp90.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy;
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| | - Erica E. Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
| | - Elena Gabriele
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Nicoletta Basilico
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy;
| | - Donatella Taramelli
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Via Pascal, 36, 20133 Milano, Italy;
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|