1
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Divar M, Edraki N, Damghani T, Moosavi F, Mohabbati M, Alipour A, Pirhadi S, Saso L, Khabnadideh S, Firuzi O. Novel spiroindoline quinazolinedione derivatives as anticancer agents and potential FLT3 kinase inhibitors. Bioorg Med Chem 2023; 90:117367. [PMID: 37348260 DOI: 10.1016/j.bmc.2023.117367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 μM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 μM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.
Collapse
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alipour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, Rome, Italy
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Yen SC, Chen LC, Huang HL, HuangFu WC, Chen YY, Eight Lin T, Lien ST, Tseng HJ, Sung TY, Hsieh JH, Huang WJ, Pan SL, Hsu KC. Identification of a dual FLT3 and MNK2 inhibitor for acute myeloid leukemia treatment using a structure-based virtual screening approach. Bioorg Chem 2022; 121:105675. [DOI: 10.1016/j.bioorg.2022.105675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
4
|
Im D, Jun J, Baek J, Kim H, Kang D, Bae H, Cho H, Hah JM. Rational design and synthesis of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazole derivatives as inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants. J Enzyme Inhib Med Chem 2022; 37:472-486. [PMID: 35067150 PMCID: PMC8788362 DOI: 10.1080/14756366.2021.2020772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a–k, 8n–z, and phenyl urea 8l–m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.
Collapse
Affiliation(s)
- Daseul Im
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Joonhong Jun
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Jihyun Baek
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Haejin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Dahyun Kang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Hyunah Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Hyunwook Cho
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| | - Jung-Mi Hah
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Korea
- Institute of Pharmaceutical Science and Technology, Center for Proteinopathy, Hanyang University, Ansan, Korea
| |
Collapse
|