1
|
Giovannuzzi S, Supuran CT. Lactonase activity of α-carbonic anhydrases allows identification of novel inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400705. [PMID: 39651798 PMCID: PMC11704026 DOI: 10.1002/ardp.202400705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Lactones, a diverse and abundant class of molecules found in nature, exhibit a wide range of bioactivities, including anti-inflammatory, anticancer, and antibacterial effects. Among them, acyl homoserine lactones (AHSLs) play a crucial role in quorum sensing, influencing bacterial pathogenicity and biofilm formation in Gram-negative bacteria. Paraoxonases (PONs), calcium-containing enzymes known for their lactonase activity, have been shown to hydrolyze AHSLs and reduce the biofilm formation of several pathogenic bacteria. In this study, we explored the potential lactonase activity of a class of zinc(II) enzymes, the carbonic anhydrases (CAs), aiming to uncover new insights into their catalytic versatility. Using LC-MS and MS/MS analyses, we investigated the lactonase activity of CAs and assessed several lactones through a stopped-flow kinetic assay as substrates/inhibitors. Our findings reveal that lactones are novel "prodrug" inhibitors of CAs, with lactones DHC and 6 showing the most promising inhibition constants (KIs) in the low micromolar range against both human and bacterial isozymes.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFirenzeItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFirenzeItaly
| |
Collapse
|
2
|
Abdel-Dayem SIA, Otify AM, Iannotti FA, Saber FR, Moriello AS, Giovannuzzi S, Świątek Ł, Bonardi A, Gratteri P, Skalicka-Woźniak K, Supuran CT. Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors. Bioorg Chem 2024; 154:108032. [PMID: 39672074 DOI: 10.1016/j.bioorg.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
3
|
Jaitak A, Kumari K, Kounder S, Monga V. Carbonic anhydrases: Moiety appended derivatives, medicinal and pharmacological implications. Bioorg Med Chem 2024; 114:117933. [PMID: 39378610 DOI: 10.1016/j.bmc.2024.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
In the realm of enzymology, Carbonic anhydrase (CA) emerges as a pivotal protagonist orchestrating the rapid conversion of carbon dioxide and water into bicarbonate ions and hydrogen ions, respectively. Carbonic anhydrase inhibitors (CAIs) are the class of drugs that target various isoforms of the enzyme, and these inhibitors play a crucial role in the treatment and management of multiple diseases such as cancer, glaucoma, high altitude sickness, rheumatoid arthritis, obesity, epilepsy, and sleep apnea. Several structural classes of CAIs developed till date possess unique architects of the pharmacophoric requirements around the central core moiety for the selective targeting of various isoforms of the CA. Recent advancements in drug design and development, along with technologies that aid in structure determination, have led to the development of several isoform-selective inhibitors of CA enzymes. However, their clinical development was hampered by the lack of desired therapeutic efficacy, isoform selectivity and safety profile. This review covers the most recent approaches used by different researchers concerned with the development of isoform-selective carbonic anhydrase inhibitors belonging to distinct structural classes like sulphonamides, carbazoles, selenols, coumarin, organotelluride, topiramate, thiophene, triazole, uracil-modified benzylic amines, and thiourea etc. In addition, their structure-activity relationships, biological evaluation, and in silico studies inlcuding the forthcoming avenues of advancements have been discussed. This review serves as a valuable resource for developing potent and efficacious CAIs with remarkable therapeutic implications; offering insights into their potency, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Khushi Kumari
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Sanjay Kounder
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
4
|
Carta F. Non-sulfonamide bacterial CA inhibitors. Enzymes 2024; 55:193-212. [PMID: 39222991 DOI: 10.1016/bs.enz.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Non-sulfonamide chemical moieties able to inhibit the bacterial (b) expressed Carbonic Anhydrases (CAs; EC 4.2.1.1) constitute an important alternative to the prototypic modulators discussed in Chapter 6, as give access to large and variegate chemical classes, also of the natural origin. This contribution reports the main classes of compounds profiled in vitro on the bCAs and thus may be worth developing for the validation process of this class of enzymes.
Collapse
Affiliation(s)
- Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
Onyilmaz M, Koca M, Ammara A, Degirmenci M, Supuran CT. Isocoumarins incorporating chalcone moieties act as isoform selective tumor-associated carbonic anhydrase inhibitors. Future Med Chem 2024; 16:1347-1355. [PMID: 39109432 PMCID: PMC11318696 DOI: 10.1080/17568919.2024.2350875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: A series of isocoumarin-chalcone hybrids were prepared and assays for the inhibition of four isoforms of human carbonic anhydrase (hCA; EC 4.2.1.1), hCA I, II, IX and XII. Materials & methods: Isocoumarin-chalcone hybrids were synthesized by condensing acetyl-isocoumarin with aromatic aldehydes. They did not significantly inhibit off-target cytosolic isoforms hCA I and II (KI >100 μM) but acted as low micromolar or submicromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Results & conclusion: Our work provides insights into a new and scarcely investigated chemotype which provides interesting tumor-associated CA inhibitors, considering that some such derivatives like sulfonamide SLC-0111 are in advanced clinical trials for the management of metastatic advanced solid tumors.
Collapse
Affiliation(s)
- Mehmet Onyilmaz
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Murat Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adıyaman02040, Turkey
| | - Andrea Ammara
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Mustafa Degirmenci
- Faculty of Science & Arts, Department of Chemistry, Harran University, Sanliurfa63290, Turkey
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
7
|
Mu Y, Meng Q, Fan X, Xi S, Xiong Z, Wang Y, Huang Y, Liu Z. Identification of the inhibition mechanism of carbonic anhydrase II by fructooligosaccharides. Front Mol Biosci 2024; 11:1398603. [PMID: 38863966 PMCID: PMC11165268 DOI: 10.3389/fmolb.2024.1398603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Polygonatum sibiricum (P. sibiricum), recognized as a precious nourishing Chinese traditional medicine, exhibits the pharmacological effect of anti-aging. In this work, we proposed a novel mechanism underlying this effect related to the less studied bioactive compounds fructooligosaccharides in P. sibiricum (PFOS) to identify the inhibition effect of the small glycosyl molecules on the age-related zinc metalloprotease carbonic anhydrase II (CA II). Molecular docking and molecular dynamics simulation were used to investigate the structural and energetic properties of the complex systems consisting of the CA II enzyme and two possible structures of PFOS molecules (PFOS-A and PFOS-B). The binding affinity of PFOS-A (-7.27 ± 1.02 kcal/mol) and PFOS-B (-8.09 ± 1.75 kcal/mol) shows the spontaneity of the binding process and the stability of the combination in the solvent. Based on the residue energy decomposition and nonbonded interactions analysis, the C-, D- and G-sheet fragments of the CA II were found to be crucial in binding process. Van der Waals interactions form on the hydrophobic surface of CAII mainly with 131PHE and 135VAL, while hydrogen bonds form on the hydrophilic surface mainly with 67ASN and 92GLN. The binding of PFOS results in the blocking of the zinc ions pocket and then inhibiting its catalytic activity, the stability of which has been further demonstrated by free energy landscape. These findings provide evidence of the effective inhibition of PFOS to CA II enzyme, which leads to a novel direction for exploring the mechanism of traditional Chinese medicine focused on small molecule fructooligosaccharides.
Collapse
Affiliation(s)
- Yue Mu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Xinyi Fan
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Shuyun Xi
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Zhongli Xiong
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yihua Wang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yanling Huang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Supuran CT. Novel carbonic anhydrase inhibitors for the treatment of Helicobacter pylori infection. Expert Opin Investig Drugs 2024; 33:523-532. [PMID: 38517734 DOI: 10.1080/13543784.2024.2334714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Helicobacter pylori, the causative agent of peptic ulcer, gastritis, and gastric cancer encodes two carbonic anhydrases (CA, EC 4.2.1.1) belonging to the α- and β-class (HpCAα/β), which have been validated as antibacterial drug targets. Acetazolamide and ethoxzolamide were also clinically used for the management of peptic ulcer. AREAS COVERED Sulfonamides were the most investigated HpCAα/β compounds, with several low nanomolar inhibitors identified, some of which also crystallized as adducts with HpCAα, allowing for the rationalization of the structure-activity relationship. Few data are available for other classes of inhibitors, such as phenols, sulfamides, sulfamates, dithiocarbamates, arylboronic acids, some of which showed effective in vitro inhibition and for phenols, also inhibition of planktonic growth, biofilm formation, and outer membrane vesicles spawning. EXPERT OPINION Several recent drug design studies reported selenazoles incorporating seleno/telluro-ethers attached to benzenesulfonamides, hybrids incorporating the EGFR inhibitor erlotinib and benzenesulfonamides, showing KIs < 100 nM against HpCAα and MICs in the range of 8-16 µg/mL for the most active derivatives. Few drug design studies for non-sulfonamide inhibitors were performed to date, although inhibition of these enzymes may help the fight of multidrug resistance to classical antibiotics which emerged in the last decades also for this bacterium.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Wang ZP, Zhang W, Xing LZ, Zhao YD, Xu J, Zhang YX. Therapeutic potential of Coumarin-polyphenolic acid hybrids in PD: Inhibition of α-Syn aggregation and disaggregation of preformed fibrils, leading to reduced neuronal inclusion formation. Bioorg Med Chem Lett 2024; 99:129618. [PMID: 38219887 DOI: 10.1016/j.bmcl.2024.129618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 μM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of β-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.
Collapse
Affiliation(s)
- Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
10
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
11
|
Balašova A, Pustenko A, Nocentini A, Vullo D, Supuran CT, Žalubovskis R. Aryl derivatives of 3 H-1,2-benzoxaphosphepine 2-oxides as inhibitors of cancer-related carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2023; 38:2249267. [PMID: 37655449 PMCID: PMC10478600 DOI: 10.1080/14756366.2023.2249267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023] Open
Abstract
A range of 3H-1,2-benzoxaphosphepine 2-oxide aryl derivatives with various substitution patterns at positions 7, 8, or 9 of the scaffold was synthesised in five steps from the commercially available salicylaldehydes. All of the newly obtained compounds were studied for their inhibition potency against carbonic anhydrase (CA) isoforms I, II, IX, and XII. Delightfully, these compounds showed a striking selectivity for the cancer-associated CA IX and XII over the cytosolic CA I and II, whose inhibition may lead to side-effects. Overall, a structure-activity relationship (SAR) revealed that 7- and 8-substituted aryl derivatives were more effective inhibitors of CA IX and XII than 9-substituted derivatives. In addition, the fluorine-containing analogues emerged as the most potent CA IX/XII inhibitors in this series.
Collapse
Affiliation(s)
- Anastasija Balašova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | | | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, Florence, Italy
| | - Daniela Vullo
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
12
|
Giovannuzzi S, De Luca V, Capasso C, Supuran CT. Inhibition studies with simple and complex (in)organic anions of the γ-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri, MscCAγ. J Enzyme Inhib Med Chem 2023; 38:2173748. [PMID: 36719031 PMCID: PMC9891171 DOI: 10.1080/14756366.2023.2173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
The γ-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri (MscCAγ) was recently cloned and purified by our groups. Here we investigated inhibition of this enzyme with (in)organic simple and complex anions, in the search of inhibitors with potential applications. The most effective inhibitors (KIs in the micromolar range) were peroxydisulfate and trithiocarbonate, whereas submillimolar inhibition was observed with N,N-diethyldithiocarbamate and phenylboronic acid (KIs of 0.5-0.9 mM). Thiocyanate, hydrogensulfide, bisulphite, stannate, divanadate, tetraborate, perrhenate, perruthenate, hexafluorophosphate, triflate and iminodisulfonate showed KIs of 1.0-13.7 mM. Cyanate, cyanide, azide, carbonate, nitrate, tellurate, selenocyanide, tetrafluoroborate, sulfamide, sulphamic acid and phenylarsonic acid were weaker inhibitors, with KIs in the range of 25.2-95.5 mM, whereas halides, bicarbonate, nitrite, sulphate, perchlorate and fluorosulfonate did not show inhibitory action up until 100 mM concentrations in the assay system. Finding more effective MscCAγ inhibitors may be helpful to fight drug resistance to antibiotics.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
13
|
Berrino E, Carradori S, Carta F, Melfi F, Gallorini M, Poli G, Tuccinardi T, Fernández-Bolaños JG, López Ó, Petzer JP, Petzer A, Guglielmi P, Secci D, Supuran CT. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants (Basel) 2023; 12:2044. [PMID: 38136164 PMCID: PMC10740956 DOI: 10.3390/antiox12122044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Francesco Melfi
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| |
Collapse
|
14
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
15
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Mareş C, Udrea AM, Şuţan NA, Avram S. Bioinformatics Tools for the Analysis of Active Compounds Identified in Ranunculaceae Species. Pharmaceuticals (Basel) 2023; 16:842. [PMID: 37375790 DOI: 10.3390/ph16060842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The chemical compounds from extracts of three Ranunculaceae species, Aconitum toxicum Rchb., Anemone nemorosa L. and Helleborus odorus Waldst. & Kit. ex Willd., respectively, were isolated using the HPLC purification technique and analyzed from a bioinformatics point of view. The classes of compounds identified based on the proportion in the rhizomes/leaves/flowers used for microwave-assisted extraction and ultrasound-assisted extraction were alkaloids and phenols. Here, the quantifying of pharmacokinetics, pharmacogenomics and pharmacodynamics helps us to identify the actual biologically active compounds. Our results showed that (i) pharmacokinetically, the compounds show good absorption at the intestinal level and high permeability at the level of the central nervous system for alkaloids; (ii) regarding pharmacogenomics, alkaloids can influence tumor sensitivity and the effectiveness of some treatments; (iii) and pharmacodynamically, the compounds of these Ranunculaceae species bind to carbonic anhydrase and aldose reductase. The results obtained showed a high affinity of the compounds in the binding solution at the level of carbonic anhydrases. Carbonic anhydrase inhibitors extracted from natural sources can represent the path to new drugs useful both in the treatment of glaucoma, but also of some renal, neurological and even neoplastic diseases. The identification of natural compounds with the role of inhibitors can have a role in different types of pathologies, both associated with studied and known receptors such as carbonic anhydrase and aldose reductase, as well as new pathologies not yet addressed.
Collapse
Affiliation(s)
- Cătălina Mareş
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Nicoleta Anca Şuţan
- Department of Natural Sciences, University of Piteşti, 1 Targul din Vale Str., 110040 Pitesti, Romania
| | - Speranţa Avram
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
17
|
Huwaimel BI, Jonnalagadda SK, Jonnalagadda S, Kumari S, Nocentini A, Supuran CT, Trippier PC. Selective carbonic anhydrase IX and XII inhibitors based around a functionalized coumarin scaffold. Drug Dev Res 2023; 84:681-702. [PMID: 36872587 PMCID: PMC10257758 DOI: 10.1002/ddr.22049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Inhibition of specific carbonic anhydrase (CA) enzymes is a validated strategy for the development of agents to target cancer. The CA isoforms IX and XII are overexpressed in various human solid tumors wherein they play a critical role in regulating extracellular tumor acidification, proliferation, and progression. A series of novel sulfonamides based on the coumarin scaffold were designed, synthesized and characterized as potent and selective CA inhibitors. Selected compounds show significant activity and selectivity over CA I and CA II to target the tumor-associated CA IX and CA XII with high inhibition activity at the single digit nanomolar level. Twelve compounds were identified to be more potent compared with acetazolamide (AAZ) control to inhibit CA IX while one was also more potent than AAZ to inhibit CA XII. Compound 18f (Ki's = 955 nM, 515 nM, 21 nM and 5 nM for CA's I, II, IX, and XII, respectively) is highlighted as a novel CA IX and XII inhibitor for further development.
Collapse
Affiliation(s)
- Bader I. Huwaimel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Alessio Nocentini
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
18
|
Di Stasi LC. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040511. [PMID: 37111267 PMCID: PMC10142712 DOI: 10.3390/ph16040511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
19
|
Zengin Kurt B, Celebi G, Ozturk Civelek D, Angeli A, Akdemir A, Sonmez F, Supuran CT. Tail-Approach-Based Design and Synthesis of Coumarin-Monoterpenes as Carbonic Anhydrase Inhibitors and Anticancer Agents. ACS OMEGA 2023; 8:5787-5807. [PMID: 36816648 PMCID: PMC9933483 DOI: 10.1021/acsomega.2c07459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
In this study, sixty novel coumarin-monoterpene compounds were synthesized in two series [thirty-two compounds (12-43) bearing a triazole ring in the first series, and twenty-eight compounds (44-71) bearing an alkyl chain in the second one]. Their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I, II, IX, and XII and anticancer potentials were determined. All synthesized molecules selectively inhibited CA IX and XII. 23 and 42 were found to be the strongest inhibitors, with K i values of 1.9 nM against hCA IX. Also, 70 showed the highest inhibitory activity with a K i value of 4.9 nM against hCA XII. Moreover, their cytotoxic effects on colon adenocarcinoma (HT-29), prostate adenocarcinoma (PC-3), and breast adenocarcinoma (MCF-7) cell lines were evaluated. According to the cytotoxicity results, 14 (IC50 = 2.48 μM) and 63 (IC50 = 3.91 μM) exhibited the highest cytotoxicity on the MCF-7 cells, while 23 showed the strongest cytotoxic effect on both PC-3 (IC50 = 9.40 μM) and HT-29 (IC50 = 12.10 μM) cell lines. 14, 23, and 66 decreased CA IX and CA XII protein expression in HT-29 cells, while 23 and 66 showed the strongest reduction of both CA IX and CA XII in MCF-7 cells. All of the selected compounds increased total apoptosis in a concentration-dependent manner in HT-29 and MCF-7 cells. 14 has the strongest apoptotic effect in MCF-7 cells. 23 increased early apoptosis primarily, while 14 and 66 increased total apoptosis in HT-29. In addition, PI/Hoechst staining proves that apoptotic cells are increased in HT-29 with an effect of 14, 23, and 66. As a result of the modeling studies, it has been shown that only the open coumarin form of the compounds can interact directly with the active-site Zn2+ ion. It has been shown that coumarin-monoterpene structures with different alkyl and monoterpene groups both specifically inhibit CA IX and XII and exhibit specific cytotoxicity in different cell lines.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Gulsen Celebi
- Faculty
of Medicine, Department of Pharmacology, Kocaeli University, Kocaeli 41001, Türkiye
| | - Dilek Ozturk Civelek
- Faculty
of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Andrea Angeli
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Atilla Akdemir
- Faculty
of Pharmacy, Department of Pharmacology, Computer-Aided Drug Discovery
Laboratory, Bezmialem Vakif University, Istanbul 34093, Türkiye
| | - Fatih Sonmez
- Pamukova
Vocational School, Sakarya University of
Applied Sciences, Sakarya 54055, Türkiye
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
20
|
Berrino E, Micheli L, Carradori S, di Cesare Mannelli L, Guglielmi P, De Luca A, Carta F, Ghelardini C, Secci D, Supuran CT. Novel Insights on CAI-CORM Hybrids: Evaluation of the CO Releasing Properties and Pain-Relieving Activity of Differently Substituted Coumarins for the Treatment of Rheumatoid Arthritis. J Med Chem 2023; 66:1892-1908. [PMID: 36701258 DOI: 10.1021/acs.jmedchem.2c01706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pain control is among the most important healthcare services in patients affected by rheumatoid arthritis (RA), but the current therapeutic options (i.e., disease-modifying anti-rheumatic drugs) are limited by the risk of the side effects. In this context, we proposed an innovative approach based on the hybridization between carbonic anhydrase inhibitors (CAIs) and CO releasing molecules (CORMs). The resulting CAI-CORM hybrids were revealed to possess strong anti-inflammatory effects in in vitro models of diseases and to relieve ache symptoms in an in vivo RA rat model. In this work, we have deepened the study of these promising hybrids, designing a library of coumarin-based compounds, also including internal dicobalt hexacarbonyl systems. The results obtained from the CO releasing study, the CA inhibitory activity, and the in vivo pain-relief efficacy evaluation in the RA rat model confirmed the success of this strategy, allowing us to consider CAI-CORM hybrids promising anti-nociceptive agents against arthritis.
Collapse
Affiliation(s)
- Emanuela Berrino
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy.,Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenzo di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro De Luca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| |
Collapse
|
21
|
Dettori T, Sanna G, Cocco A, Serreli G, Deiana M, Palmas V, Onnis V, Pilia L, Melis N, Moi D, Caria P, Secci F. Synthesis and Antiproliferative Effect of Halogenated Coumarin Derivatives. Molecules 2022; 27:molecules27248897. [PMID: 36558029 PMCID: PMC9786284 DOI: 10.3390/molecules27248897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed. Among the screened compounds, coumarins 6,8-dibromo-2-oxo-2H-chromene-3-carbonitrile 2h and 6,8-diiodo-2-oxo-2H-chromene-3-carbonitrile 2k exhibited the most antiproliferative effect in thyroid cancer-derived cells TPC-1. The apoptosis assay showed that both 2h and 2k induced apoptosis in TPC-1 thyroid cancer cells. According to these experiments, both coumarins induced a slight increase in TPC-1 cells in the G2/M phase and a decrease in the S phase. A significant increase in ROS levels was observed in TPC-1 treated with diiodocoumarin 2k, while the dibromocoumarin 2h induced a decrease in ROS in a dose and time-dependent manner.
Collapse
Affiliation(s)
- Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Andrea Cocco
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Nicola Melis
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, 09123 Cagliari, CA, Italy
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Monserrato, CA, Italy
- Correspondence: (D.M.); (P.C.); (F.S.)
| |
Collapse
|
22
|
Eldehna WM, Taghour MS, Al-Warhi T, Nocentini A, Elbadawi MM, Mahdy HA, Abdelrahman MA, Alotaibi OJ, Aljaeed N, Elimam DM, Afarinkia K, Abdel-Aziz HA, Supuran CT. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022; 37:531-541. [PMID: 34991416 PMCID: PMC8745369 DOI: 10.1080/14756366.2021.2024528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Mostafa M. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaaeldin M. Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
23
|
Venkatesh GB, HariPrasad S, Jeevan Chakravarthy AS. One-pot synthesis of a new class of alkynyl anionic synthons: the 4-(2',2-trimethylsilylethynylphenoxymethyl)-2 H-chromen-2-ones. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. B. Venkatesh
- Department of Chemistry, Government Pre-University College, Chickaballapur, India
| | - S. HariPrasad
- Department of Chemistry, Central College Campus, Bengaluru Central University, Bangalore, India
| | | |
Collapse
|
24
|
Supuran CT. Carbonic Anhydrase Inhibitors from Marine Natural Products. Mar Drugs 2022; 20:721. [PMID: 36422000 PMCID: PMC9696426 DOI: 10.3390/md20110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 04/14/2024] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in organisms in all life kingdoms, being involved in pH regulation, metabolic processes and many other physiological and pathological conditions. CA inhibitors and activators thus possess applications as pharmacological agents in the management of a range of diseases. Marine natural products have allowed the identification of some highly interesting CA inhibitors, among which are sulfonamides, phenols, polyamines, coumarins and several other miscellaneous inhibitors, which are reviewed here. Psammaplin C and some bromophenols were the most investigated classes of such marine-based inhibitors and have been used as lead molecules for developing interesting types of potent and, in some cases, isoform-selective inhibitors, with applications as antitumor agents by inhibiting human CA XII and P-glycoprotein activities. Some phenols have shown interesting bacterial and fungal β-CA inhibitory effects. Marine natural products thus constitute a gold mine for identifying novel CA inhibitors, some of which may lead to the development of novel types of pharmacological agents.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| |
Collapse
|
25
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
26
|
Pontecorvi V, Mori M, Picarazzi F, Zara S, Carradori S, Cataldi A, Angeli A, Berrino E, Chimenti P, Ciogli A, Secci D, Guglielmi P, Supuran CT. Novel Insights on Human Carbonic Anhydrase Inhibitors Based on Coumalic Acid: Design, Synthesis, Molecular Modeling Investigation, and Biological Studies. Int J Mol Sci 2022; 23:7950. [PMID: 35887299 PMCID: PMC9324074 DOI: 10.3390/ijms23147950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII are overexpressed in solid hypoxic tumors, and they are considered as prognostic tools and therapeutic targets for cancer. Based on a molecular simplification of the well-known coumarin scaffold, we developed a new series of derivatives of the pyran-2-one core. The new compounds are endowed with potent and selective inhibitory activity against the tumor-related hCA isoforms IX and XII, in the low nanomolar range, whereas they are inactive against the two cytosolic off-targets hCA I and II. The compounds exhibiting the best hCA inhibition were further investigated against the breast adenocarcinoma cell line (MCF7) in hypoxic conditions, evaluating their ability to eventually synergize with doxorubicin. The compounds' biocompatibility on healthy cells was also tested and confirmed on Human Gingival Fibroblasts (HGFs). Furthermore, the possible binding mode of all compounds to the active site of the tumor-associated human CA IX was investigated by computational techniques which predicted the binding conformations and the persistency of binding poses within the active site of the enzyme, furnishing relevant data for the design of tight binding inhibitors.
Collapse
Affiliation(s)
- Virginia Pontecorvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Amelia Cataldi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Andrea Angeli
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Alessia Ciogli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
| |
Collapse
|
27
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
28
|
An Update on Synthesis of Coumarin Sulfonamides as Enzyme Inhibitors and Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051604. [PMID: 35268704 PMCID: PMC8911621 DOI: 10.3390/molecules27051604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited.
Collapse
|
29
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
30
|
Pan Y, Liu T, Wang X, Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J Enzyme Inhib Med Chem 2022; 37:616-628. [PMID: 35067136 PMCID: PMC8788346 DOI: 10.1080/14756366.2021.2024526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.
Collapse
Affiliation(s)
- Yinbo Pan
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
31
|
Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Flaherty DP, Supuran CT. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J Enzyme Inhib Med Chem 2022; 37:333-338. [PMID: 34979838 PMCID: PMC8741243 DOI: 10.1080/14756366.2021.2012174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coumarins are known to act as prodrug inhibitors of mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) but they were not yet investigated for the inhibition of bacterial α-CAs. Here we demonstrate that such enzymes from the bacterial pathogens Neisseria gonorrhoeae (NgCAα) and Vibrio cholerae (VchCAα) are inhibited by a panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system. The nature and the position of the substituents in the coumarin ring were the factors which strongly influenced inhibitory efficacy. NgCAα was inhibited with KIs in the range of 28.6-469.5 µM, whereas VchCAα with KIs in the range of 39.8-438.7 µM. The two human (h)CA isoforms included for comparison reason in the study, hCA I and II, were less prone to inhibition by these compounds, with KIs of 137-948.9 µM for hCA I and of 296.5-961.2 µM for hCA II, respectively. These findings are relevant for discovering coumarin bacterial CA inhibitors with selectivity for the bacterial over human isoform, with potential applications as novel antibacterial agents.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Pharmaceutical and Nutraceutical Section, Neurofarba Department, University of Florence, Florence, Italy
| | - Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alessio Nocentini
- Pharmaceutical and Nutraceutical Section, Neurofarba Department, University of Florence, Florence, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Claudiu T Supuran
- Pharmaceutical and Nutraceutical Section, Neurofarba Department, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Petreni A, Osman SM, Alasmary FA, Almutairi TM, Nocentini A, Supuran CT. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021; 226:113875. [PMID: 34634741 DOI: 10.1016/j.ejmech.2021.113875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
The first structural analysis comparing the binding mode to the target carbonic anhydrases (CAs, EC 4.2.1.1) of two opposite classes of modulators is presented here: coumarin derivatives act as prodrug CA inhibitors (CAIs), being hydrolyzed by the enzyme esterase activity to 2-hydroxycinnamic acids that occlude the active site entrance; CA activators (CAAs) belonging of the amine and amino acid types, enhance the CA activity by increasing the efficiency of the rate-determining proton shuttling step in the CA catalytic cycle. Analysis of the crystallographic data available for the human CA isoform II in adduct with two coumarin CAIs and some CAAs showed that both types of CA modulators bind in the same region of the enzyme active site, basically interacting with superimposable amino acid residues, that are Trp5, Asn62, His64, Asn67, Gln92, Thr200. A plethora of water molecules also participate in the adducts formation. This structural analysis showed that presence of certain chemical groups in the compound structure is mandatory to produce an activating rather than inhibitory action, such as multiple nitrogen- and oxygen-based moieties capable of shuttling protons or forming extended H-bond networks nearby the proton shuttle residue. This constitutes the only known example among all enzymes of an identical binding site for inhibitors and activators, which, in addition, possess significant pharmacological applications.
Collapse
Affiliation(s)
- Andrea Petreni
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
33
|
Fuentes-Aguilar A, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Puerta A, Fernandes MX, Padrón JM, Petreni A, Nocentini A, Supuran CT, López Ó, Fernández-Bolaños JG. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 37:168-177. [PMID: 34894971 PMCID: PMC8667885 DOI: 10.1080/14756366.2021.1998026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Andrea Petreni
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
34
|
Singh P, Kumar Sigalapalli D, Sridhar Goud N, Swain B, Kumar Sahoo S, Angeli A, Shaik AB, Madhavi Yaddanapudi V, Supuran CT, Arifuddin M. Ureidosulfocoumarin Derivatives As Selective and Potent Carbonic Anhydrase IX and XII Inhibitors. ChemMedChem 2021; 17:e202100725. [PMID: 34898017 DOI: 10.1002/cmdc.202100725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Indexed: 11/09/2022]
Abstract
Owing to severe allergic reactions (anaphylaxis) and resistance exhibited by sulfonamide-based carbonic anhydrase (CA) inhibitors, non-classical or non-sulfonamide CA inhibitors are gaining increased attention by medicinal chemists. In this context, we report the design and synthesis of 30 new non-sulfonamide sulfocoumarin derivatives as CA inhibitors. They were investigated against hCA I and II (cytosolic isozymes) as well as hCA IX and XII (transmembrane, tumor-associated enzymes). All compounds showed prominent selectivity for the tumor-associated isoenzymes hCA IX and XII over the cytosolic isoenzymes hCA I and II. Among all synthesized compounds, 1-(2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)-3-(o-tolyl)urea(5 j)and1-(3-fluorophenyl)-3-(8-methoxy-2,2-dioxidobenzo[e][1,2]oxathiin-6-yl)urea(5 q)were found to be more potent and to have better inhibition constant values against hCA IX than the standard acetazolamide (AAZ), with Ki values of 23.6 and 23.3 nM, respectively. All other compounds were found to be active under Ki =920 nM against hCA IX and XII.This study provides a new perspective for the future development of non-sulfonamide derivatives as selective CA inhibitors.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Dilep Kumar Sigalapalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India.,Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Nerella Sridhar Goud
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India.,Department of Neuroimaging and Interventional Radiology (NIIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560027, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Santosh Kumar Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Afzal B Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India.,Synergy Community Welfare Research Center (SCWRC), Head Office, Panacea, Synergy India Foundation, 4th Floor, TSWREIS Building, Masab Tank, Hyderabad, 500028, India
| |
Collapse
|
35
|
Amine- and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules 2021; 26:molecules26237331. [PMID: 34885917 PMCID: PMC8659172 DOI: 10.3390/molecules26237331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.
Collapse
|
36
|
Akpunar C, Özdemir N, Karataş MO, Alıcı B, Özdemir İ. Synthesis, crystal structures and catalytic activities of palladium complexes with coumarin-functionalised N-heterocyclic carbene ligands. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Supuran CT, Nocentini A, Yakubova E, Savchuk N, Kalinin S, Krasavin M. Biochemical profiling of anti-HIV prodrug Elsulfavirine (Elpida ®) and its active form VM1500A against a panel of twelve human carbonic anhydrase isoforms. J Enzyme Inhib Med Chem 2021; 36:1056-1060. [PMID: 34000969 PMCID: PMC8143618 DOI: 10.1080/14756366.2021.1927007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The non-nucleoside reverse transcriptase inhibitor VM1500A is approved for the treatment of HIV/AIDS in its N-acyl sulphonamide prodrug form elsulfavirine (Elpida®). Biochemical profiling against twelve human carbonic anhydrase (CA, EC 4.2.1.1) isoforms showed that while elsulfavirine was a weak inhibitor of all isoforms, VM1500A potently and selectively inhibited human (h) hCA VII isoform, a proven target for the therapy of neuropathic pain. The latter is a common neurologic complication of HIV infection and we hypothesise that by using Elpida® in patients may help alleviate this debilitating symptom.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | | | - Nikolay Savchuk
- Viriom Inc, San Diego, CA, USA.,ChemDiv Inc, San Diego, CA, USA
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
38
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Meleddu R, Deplano S, Maccioni E, Ortuso F, Cottiglia F, Secci D, Onali A, Sanna E, Angeli A, Angius R, Alcaro S, Supuran CT, Distinto S. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021; 36:685-692. [PMID: 33602041 PMCID: PMC7899656 DOI: 10.1080/14756366.2021.1887171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A small library of coumarin and their psoralen analogues EMAC10157a-b-d-g and EMAC10160a-b-d-g has been designed and synthesised to investigate the effect of structural modifications on their inhibition ability and selectivity profile towards carbonic anhydrase isoforms I, II, IX, and XII. None of the new compounds exhibited activity towards hCA I and II isozymes. Conversely, both coumarin and psoralen derivatives were active against tumour associated isoforms IX and XII in the low micromolar or nanomolar range of concentration. These data further corroborate our previous findings on analogous derivatives, confirming that both coumarins and psoralens are interesting scaffolds for the design of isozyme selective hCA inhibitors.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Rossella Angius
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Pula, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
40
|
Zhu H, Ying S, Zhou B, Hu X, Liang X, Li W, Wang D, Jin H, Pan Y. Design, synthesis, and evaluation of novel coumarin-dithiocarbamate derivatives (IDs) as anti-colorectal cancer agents. J Enzyme Inhib Med Chem 2021; 36:593-604. [PMID: 33557648 PMCID: PMC8759731 DOI: 10.1080/14756366.2021.1875458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumour of human digestive tract. The high mortality rate of CRC is closely related to the limitations of existing treatments. Thus, there is an urgent need to search for new anti-CRC agents. In this work, twenty novel coumarin-dithiocarbamate derivatives (IDs) were designed, synthesized and evaluated in vitro. The results suggest that the most active compound ID-11 effectively inhibited the proliferation of CRC cell lines while shown little impact on normal colon epithelial cells. Mechanism studies revealed that ID-11 displayed bromodomain-containing protein 4 inhibitory activity, and induced G2/M phase arrest, apoptosis as well as decreased the expression levels of the key genes such as c-Myc and Bcl-2 in CRC cell lines. Moreover, the ADMET properties prediction results shown that ID-11 possess well metabolic characteristics without obvious toxicities. Our data demonstrated that compound ID-11 may be a promising anti-CRC agent and deserved for further development.
Collapse
Affiliation(s)
- Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Bingluo Zhou
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
41
|
Miao Y, Yang J, Yun Y, Sun J, Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem 2021; 36:450-461. [PMID: 33557646 PMCID: PMC7889190 DOI: 10.1080/14756366.2021.1873978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis is a chronic systemic disease characterised by an unknown aetiology of inflammatory synovitis. A large number of studies have shown that synoviocytes show tumour-like dysplasia in the pathological process of RA, and the changes in the expression of related cytokines are closely related to the pathogenesis of RA. In this thesis, a series of novel 3-(4-aminophenyl) coumarins containing different substituents were synthesised to find new coumarin anti-inflammatory drugs for the treatment of rheumatoid arthritis. The results of preliminary activity screening showed that compound 5e had the strongest inhibitory activity on the proliferation of fibroid synovial cells, and it also had inhibitory effect on RA-related cytokines IL-1, IL-6, and TNF-α. The preliminary mechanism study showed that compound 5e could inhibit the activation of NF-κB and MAPKs signal pathway. The anti-inflammatory activity of compound 5ein vivo was further determined in the rat joint inflammation model.
Collapse
Affiliation(s)
- Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
42
|
Kuzu B, Tan M, Gülçin İ, Menges N. A novel class for carbonic anhydrases inhibitors and evaluation of their non-zinc binding. Arch Pharm (Weinheim) 2021; 354:e2100188. [PMID: 34096646 DOI: 10.1002/ardp.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
In this study, 23 different imidazole derivatives were synthesized, and the inhibitory properties of these derivatives against carbonic anhydrase I and II isoenzymes were investigated for the first time. The inhibition concentrations of the imidazole derivatives were found to be in the range of 2.89-115.5 nM. Docking studies examined the binding properties of the imidazole derivatives, and the structure-activity relationship is discussed. Theoretical calculations showed that the binding mode of the imidazole ring was non-zinc binding.
Collapse
Affiliation(s)
- Burak Kuzu
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - Meltem Tan
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
43
|
Montanari S, Allarà M, Scalvini L, Kostrzewa M, Belluti F, Gobbi S, Naldi M, Rivara S, Bartolini M, Ligresti A, Bisi A, Rampa A. New Coumarin Derivatives as Cholinergic and Cannabinoid System Modulators. Molecules 2021; 26:molecules26113254. [PMID: 34071439 PMCID: PMC8198714 DOI: 10.3390/molecules26113254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.
Collapse
Affiliation(s)
- Serena Montanari
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Laura Scalvini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Magdalena Kostrzewa
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Silvia Rivara
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.S.); (S.R.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.A.); (M.K.); (A.L.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (S.M.); (F.B.); (S.G.); (M.N.); (M.B.)
- Correspondence: (A.B.); (A.R.)
| |
Collapse
|
44
|
Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther 2021; 225:107860. [PMID: 33895188 DOI: 10.1016/j.pharmthera.2021.107860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Heterocyclic scaffolds are widely utilized for drug design by taking into account the molecular structure of therapeutic targets that are related to a broad spectrum of ailments, including tumors. Such compounds display various covalent and non-covalent interactions with the specific residues of the target proteins while causing their inhibition. There is a substantial number of heterocyclic compounds approved for cancer treatment, and these compounds function by interacting with different therapeutic targets involved in tumorogenesis. In this review, we trace and emphasize the privileged heterocyclic pharmacophores that have immense potency against several essential chemotherapeutic tumor targets: microtubules, kinases and carbonic anhydrases. Potent compounds currently undergoing pre-clinical and clinical studies have also been assessed for ascertaining the effective class of chemical scaffolds that have significant therapeutic potential against multiple malignancies. In addition, we also describe briefly the role of heterocyclic compounds in various chemotherapy regimens. The optimized molecular hybridization of delineated motifs may result in the discovery of more active anticancer therapeutics and circumvent the development of resistance by specific targets in the future.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Amir Azam
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
45
|
Synthesis and Biological Evaluation of Coumarin-Linked 4-Anilinomethyl-1,2,3-Triazoles as Potent Inhibitors of Carbonic Anhydrases IX and XIII Involved in Tumorigenesis. Metabolites 2021; 11:metabo11040225. [PMID: 33917033 PMCID: PMC8067737 DOI: 10.3390/metabo11040225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 01/11/2023] Open
Abstract
A series of coumarin-linked 4-anilinomethyl-1,2,3-triazoles (6a–t) was synthesized via a molecular hybridization approach, through carbon C-6 of the coumarin moiety. The synthesized compounds were evaluated for their inhibition of carbonic anhydrase (CA) isoforms I, II, IX and XIII. CAs IX and XIII were selectively inhibited over the off-target isoforms I and II. The best inhibitory profiles against CA IX were shown by compounds 6a, 6e and 6f (Ki < 50 nM), with compound 6e displaying the best inhibition with a Ki value of 36.3 nM. Compounds 6a, 6b, 6j, 6o and 6q exhibited the best inhibitory profiles against CA XIII (Ki < 100 nM). These compounds can be further explored for the discovery of potent and effective CA IX and CA XIII inhibitors.
Collapse
|
46
|
Cakmak EB, Zengin Kurt B, Ozturk Civelek D, Angeli A, Akdemir A, Sonmez F, Supuran CT, Kucukislamoglu M. Quinoline-sulfamoyl carbamates/sulfamide derivatives: Synthesis, cytotoxicity, carbonic anhydrase activity, and molecular modelling studies. Bioorg Chem 2021; 110:104778. [PMID: 33684713 DOI: 10.1016/j.bioorg.2021.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrase (CA) IX, and XII isoforms are known to be highly expressed in various human tissues and malignancies. CA IX is a prominent target for some cancers because it is overexpressed in hypoxic tumors and this overexpression leads to poor prognosis. Novel twenty-seven compounds in two series (sulfamoylcarbamate-based quinoline (2a-2o) and sulfamide-based quinoline (3a-3l)) were synthesized and characterized by means of IR, NMR, and mass spectra. Their inhibitory activities were evaluated against CA I, CA II, CA IX, and CA XII isoforms. 2-Phenylpropyl (N-(quinolin-8-yl)sulfamoyl)carbamate (2m) exhibited the highest hCA IX inhibition with the Ki of 0.5 µM. In addition, cytotoxic effects of the synthesized compounds on human colorectal adenocarcinoma (HT-29; HTB-38), human breast adenocarcinoma (MCF7; HTB-22), human prostate adenocarcinoma (PC3; CRL-1435) and human healthy skin fibroblast (CCD-986Sk; CRL-1947) cell lines were examined. The cytotoxicity results showed that 2j, 3a, 3e, 3f are most active compounds in all cell lines (HT-29, MCF7, PC3, and CCD-986Sk).
Collapse
Affiliation(s)
- Elmas Begum Cakmak
- Sakarya University, Institute of Natural Sciences, 54050 Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey.
| | - Dilek Ozturk Civelek
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, 34093 Istanbul, Turkey
| | - Andrea Angeli
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Atilla Akdemir
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Computer-aided Drug Discovery Laboratory, 34093 Istanbul, Turkey
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational School, 54055 Sakarya, Turkey
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mustafa Kucukislamoglu
- Sakarya University, Faculty of Arts and Science, Department of Chemistry, 54050 Sakarya, Turkey
| |
Collapse
|
47
|
Thacker PS, Srikanth D, Angeli A, Singh P, Chinchilli KK, Arifuddin M, Supuran CT. Coumarin-Thiourea Hybrids Show Potent Carbonic Anhydrase IX and XIII Inhibitory Action. ChemMedChem 2021; 16:1252-1256. [PMID: 33346945 DOI: 10.1002/cmdc.202000915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/19/2022]
Abstract
A series of coumarin-thiourea hybrids (4 a-o) has been synthesized, and the compounds have been evaluated against the tumour associated transmembrane isoform, human (h) carbonic anhydrase (CA) hCA IX and the less-explored cytosolic isoform, hCA XIII. All compounds exhibited potent inhibition of both isoforms, with KI values of <100 nM against hCA IX. Compound 4 b was the best inhibitor (KI =78.5 nM). All the compounds inhibited hCA XIII in the low-nanomolar to sub-micromolar range, with compound 4 b again showing the best inhibition (KI =76.3 nM). With compound 4 b as a lead, more-selective inhibitors of hCA IX and hCA XIII or dual hCA IX/XIII inhibitors might be developed.
Collapse
Affiliation(s)
- Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Danaboina Srikanth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Krishna Kartheek Chinchilli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
- Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad, 500001, Telangana State, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
48
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|