1
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
2
|
Denner TC, Heise NV, Serbian I, Angeli A, Supuran CT, Csuk R. An asiatic acid derived trisulfamate acts as a nanomolar inhibitor of human carbonic anhydrase VA. Steroids 2024; 205:109381. [PMID: 38325751 DOI: 10.1016/j.steroids.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- Toni C Denner
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Immo Serbian
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany.
| |
Collapse
|
3
|
Ibrahim SA, Al-Mhyawi SR, Atlam FM. New imidazole-2-ones and their 2-thione analogues as anticancer agents and CAIX inhibitors: Synthesis, in silico ADME and molecular modeling studies. Bioorg Chem 2023; 141:106872. [PMID: 37776683 DOI: 10.1016/j.bioorg.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
The present study involves the synthesis of a series of new imidazole-2-ones derivatives and their 2-thione analogs using conventional heating and the environmentally friendly benign technique, the microwave technique. Structure of the compounds was well elucidated by considering the data of both elemental and spectral analyses. The obtained data and theoretical values of the synthesized molecules correlated with the proposed molecular structure. Moreover, all the synthesized compounds were evaluated in vitro for antitumor activity against HCT-116 and HeP2 human cancer cell panels and assessed as selective carbonic anhydrase IX isozyme (CA9/CAIX) inhibitors, thereby providing useful preliminary evidence for drug development. In addition, computational techniques were used to investigate the molecular and electronic characteristics of the investigated organic compounds. The 4b compound exhibited the best quantum chemistry features, as the highest occupied molecular orbital, softness, energy gap, and dipole moment, indicating the highest biological activity. This was supported by the experimental findings. Moreover, the in silico evaluation of drug candidates was also investigated. Thereafter, the anticancer activity of the most reactive candidate was studied via molecular docking to determine the types of interactions between this molecule and CAIX. According to the docking experiments, the 4b molecule generates five hydrogen bond interactions with active amino acid residues, Gln 92, Gln 67, and Thr 200.
Collapse
Affiliation(s)
- Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Saedah R Al-Mhyawi
- Chemistry Department, College of Science, University of Jeddah, Jeddah 22233, Saudi Arabia
| | - Faten M Atlam
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
4
|
Peerzada M, Vullo D, Paoletti N, Bonardi A, Gratteri P, Supuran CT, Azam A. Discovery of Novel Hydroxyimine-Tethered Benzenesulfonamides as Potential Human Carbonic Anhydrase IX/XII Inhibitors. ACS Med Chem Lett 2023; 14:810-819. [PMID: 37312840 PMCID: PMC10258898 DOI: 10.1021/acsmedchemlett.3c00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023] Open
Abstract
To discover novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors for cancer treatment, a series of 4-{4-[(hydroxyimino)methyl]piperazin-1-yl}benzenesulfonamides were designed and synthesized using SLC-0111 as the lead molecule. The developed novel compounds 27-34 were investigated for the inhibition of human (h) isoforms hCA I, hCA II, hCA IX, and hCA XII. The hCA I was inhibited by compound 29 with a Ki value of 3.0 nM, whereas hCA II was inhibited by compound 32 with a Ki value of 4.4 nM. The tumor-associated hCA IX isoform was inhibited by compound 30 effectively with an Ki value of 43 nM, whereas the activity of another cancer-related isoform, hCA XII, was significantly inhibited by 29 and 31 with a Ki value of 5 nM. Molecular modeling showed that drug molecule 30 participates in significant hydrophobic and hydrogen bond interactions with the active site of the investigated hCAs and binds to zinc through the deprotonated sulfonamide group.
Collapse
Affiliation(s)
- Mudasir
Nabi Peerzada
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| | - Daniela Vullo
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Paoletti
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandro Bonardi
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Gratteri
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Department
of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences,
Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Amir Azam
- Medicinal
Chemistry and Drug Discovery Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
5
|
Martínez-Montiel M, Romero-Hernández LL, Giovannuzzi S, Begines P, Puerta A, Ahuja-Casarín AI, Fernandes MX, Merino-Montiel P, Montiel-Smith S, Nocentini A, Padrón JM, Supuran CT, Fernández-Bolaños JG, López Ó. Conformationally Restricted Glycoconjugates Derived from Arylsulfonamides and Coumarins: New Families of Tumour-Associated Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24119401. [PMID: 37298353 DOI: 10.3390/ijms24119401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.
Collapse
Affiliation(s)
- Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Simone Giovannuzzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Paloma Begines
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Ana I Ahuja-Casarín
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| |
Collapse
|
6
|
Cibotaru S, Sandu AI, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int J Mol Sci 2023; 24:ijms24065449. [PMID: 36982524 PMCID: PMC10049495 DOI: 10.3390/ijms24065449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure–antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay. In order to find the potential influence of different building blocks on antitumor activity, the antioxidant activity, the ability to inhibit farnesyltransferase and the capacity to bind amino acids relevant for tumor cell growth were investigated as well. It was established that different building blocks conferred different functionalities, inducing specific antitumor activity against the tumor cells.
Collapse
|
7
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
El-Malah A, Taher ES, Angeli A, Elbaramawi SS, Mahmoud Z, Moustafa N, Supuran CT, Ibrahim TS. Schiff bases as linker in the development of quinoline-sulfonamide hybrids as selective cancer-associated carbonic anhydrase isoforms IX/XII inhibitors: A new regioisomerism tactic. Bioorg Chem 2023; 131:106309. [PMID: 36502567 DOI: 10.1016/j.bioorg.2022.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
A novel set of quinoline tailored with the sulfonamide as zinc-binding group (ZBG) has been rationalized and synthesized as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Such hybrids were decorated by a novel elongated imine linker with/without ethylene spacer with variable hydrophobic and lipophilic pockets. Therefore, a regioisomeric tactic has been established, most of which act as efficient inhibitors of the tumor-associated CA isoforms IX and XII. Interestingly, one hybrid 10b displayed an appreciable activity in MCF-7 cell line under normoxic condition (IC50 of 8.42 µM) in comparison to the standard staurosporine (IC50 = 5.34 µM) and excellent activity under hypoxic conditions (IC50 = 1.56 µM) in comparison to staurosporine (IC50 = 4.45 µM). Furthermore, hybrids 8a and 10b encouraged MCF-7 and MDA-MB-231 cell apoptosis alongside promising Bax/Bcl expression ratio change. Docking studies were also, performed and agreed with the biological results. Our SAR study suggested that our regiosiomerization tactic for the quinoline based-sulfonamide molecules led to effective inhibition of tumuor-relevant hCAs IX/XII.
Collapse
Affiliation(s)
- Afaf El-Malah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ehab S Taher
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nour Moustafa
- School of Engineering and Information Technology, University of New South Wales at ADFA, Northcott Dr, Campbell, Canberra 2612, Australian Capital Territory, Australia
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
9
|
Eloranta K, Pihlajoki M, Liljeström E, Nousiainen R, Soini T, Lohi J, Cairo S, Wilson DB, Parkkila S, Heikinheimo M. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023; 13:1118268. [PMID: 36776327 PMCID: PMC9909558 DOI: 10.3389/fonc.2023.1118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background In response to hypoxia, tumor cells undergo transcriptional reprogramming including upregulation of carbonic anhydrase (CA) IX, a metalloenzyme that maintains acid-base balance. CAIX overexpression has been shown to correlate with poor prognosis in various cancers, but the role of this CA isoform in hepatoblastoma (HB) has not been examined. Methods We surveyed the expression of CAIX in HB specimens and assessed the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and hypoxic conditions. Results CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB specimens. The CAIX-positive cells clustered in the middle of viable tumor tissue or next to necrotic areas. Tissue expression of CAIX mRNA was associated with metastasis and poor clinical outcome of HB. Hypoxia induced a striking upregulation of CAIX mRNA and protein in three HB cell models: the immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced upregulation of CAIX and decreased HB cell viability, both in monolayer and spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound healing assay. Transcriptomic changes triggered by SLC-0111 administration differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited upregulation of several tumor suppressor genes under both conditions. Conclusion Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor SLC-0111 has in vitro activity against these malignant cells.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,*Correspondence: Marjut Pihlajoki,
| | - Emmi Liljeström
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefano Cairo
- Xentech, Evry, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy,Champions Oncology, Hackensack, NJ, United States
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,FICAN Mid, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland,Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States,Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Challenging breast cancer through novel sulfonamide-pyridine hybrids: design, synthesis, carbonic anhydrase IX inhibition and induction of apoptosis. Future Med Chem 2023; 15:147-166. [PMID: 36762576 DOI: 10.4155/fmc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background: Among the important key modulators of the tumor microenvironment and hypoxia is a family of enzymes named carbonic anhydrases. Herein, 11 novel sulfonamide-pyridine hybrids (2-12) were designed, synthesized and biologically evaluated for their potential use in targeting breast cancer. Methods & results: The para chloro derivative 7 reported the highest cytotoxic activity against the three breast cancer cell lines used. In addition, compound 7 was found to induce cell cycle arrest and autophagy as well as delaying wound healing. The IC50 of compound 7 against carbonic anhydrase IX was 253 ± 12 nM using dorzolamide HCl as control. Conclusion: This study encourages us to expand the designed library, where more sulfonamide derivatives would be synthesized and studied for their structure-activity relationships.
Collapse
|
11
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
12
|
Obadawo BS, Oyeneyin OE, Olanrewaju AA, Metibemu DS, Emaleku SA, Owolabi TO, Ipinloju N. Predicting the Anticancer Activity of 2-alkoxycarbonylallyl Esters against MDA-MB-231 Breast Cancer - QSAR, Machine Learning and Molecular Docking. Curr Drug Discov Technol 2022; 19:e110822207398. [PMID: 35959613 DOI: 10.2174/1570163819666220811094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The continuous increase in mortality of breast cancer and other forms of cancer due to the failure of current drugs, resistance, and associated side effects calls for the development of novel and potent drug candidates. METHODS In this study, we used the QSAR and extreme learning machine models in predicting the bioactivities of some 2-alkoxycarbonylallyl esters as potential drug candidates against MDA-MB-231 breast cancer. The lead candidates were docked at the active site of a carbonic anhydrase target. RESULTS The QSAR model of choice satisfied the recommended values and was statistically significant. The R2pred (0.6572) was credence to the predictability of the model. The extreme learning machine ELM-Sig model showed excellent performance superiority over other models against MDAMB- 231 breast cancer. Compound 22 with a docking score of 4.67 kcal mol-1 displayed better inhibition of the carbonic anhydrase protein, interacting through its carbonyl bonds. CONCLUSION The extreme learning machine's ELM-Sig model showed excellent performance superiority over other models and should be exploited in the search for novel anticancer drugs.
Collapse
Affiliation(s)
| | - Oluwatoba Emmanuel Oyeneyin
- Department of Chemical Sciences, Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | | | | | - Sunday Adeola Emaleku
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Taoreed Olakunle Owolabi
- Department of Physics and Electronics, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Nureni Ipinloju
- Department of Chemical Sciences, Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
13
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
14
|
Nerella SG, Singh P, Arifuddin M, Supuran CT. Anticancer carbonic anhydrase inhibitors: a patent and literature update 2018-2022. Expert Opin Ther Pat 2022; 32:833-847. [PMID: 35616541 DOI: 10.1080/13543776.2022.2083502] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Cancer affects an increasing number of patients each year with an unacceptable death toll worldwide. A new therapeutic approach to combat tumors consists in targeting human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII, which are tumor-associated, overexpressed enzymes in hypoxic tumors, being involved in metabolism, pH regulation, ferroptosis and overall tumor progression. AREAS COVERED Small molecule hCA IX/XII and antibody drug conjugate inhibitors targeting the two enzymes and their applications in the management of cancer are discussed. EXPERT OPINION The available 3D crystal structures of hCA IX, XII as well as the off target isoforms hCA I and II, afforded structure-based drug design opportunities, which led to the development of various isoform-selective small molecule inhibitors belonging to diverse classes (sulfonamides, sulfamates, benzoxaboroles, selenols, coumarins, sulfocoumarins and isocoumarins). Many patents focused on small inhibitors containing sulfonamide/ sulfamate/sulfamide derivatives as well as hybrids incorporating sulfonamides and different antitumor chemotypes, such as cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors. The most investigated candidate belonging to the class is the sulfonamide SLC-0111, in Phase Ib/II clinical trials for the management of advanced, metastatic solid tumors.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.,Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Gachibowli, Hyderabad 500032, T.S.India
| | - Claudiu T Supuran
- Neurofarba Dept., Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
15
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
El-Kalyoubi SA, Taher ES, Ibrahim TS, El-Behairy MF, Al-Mahmoudy AMM. Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline-Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors. Pharmaceuticals (Basel) 2022; 15:494. [PMID: 35631321 PMCID: PMC9146896 DOI: 10.3390/ph15050494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
A series of quinoline-uracil hybrids (10a-l) has been rationalized and synthesized. The inhibitory activity against hCA isoforms I, II, IX, and XII was explored. Compounds 10a-l demonstrated powerful inhibitory activity against all tested hCA isoforms. Compound 10h displayed the best selectivity profile with good activity. Compound 10d displayed the best activity profile with minimal selectivity. Compound 10l emerged as the best congener considering both activity (IC50 = 140 and 190 nM for hCA IX and hCA XII, respectively) and selectivity (S.I. = 13.20 and 9.75 for II/IX, and II/XII, respectively). The most active hybrids were assayed for antiproliferative and pro-apoptotic activities against MCF-7 and A549. In silico studies, molecular docking, physicochemical parameters, and ADMET analysis were performed to explain the acquired CA inhibitory action of all hybrids. A study of the structure-activity relationship revealed that bulky substituents at uracil N-1 were unfavored for activity while substituted quinoline and thiouracil were effective for selectivity.
Collapse
Affiliation(s)
- Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt;
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
17
|
Mussi S, Rezzola S, Chiodelli P, Nocentini A, Supuran CT, Ronca R. Antiproliferative effects of sulphonamide carbonic anhydrase inhibitors C18, SLC-0111 and acetazolamide on bladder, glioblastoma and pancreatic cancer cell lines. J Enzyme Inhib Med Chem 2021; 37:280-286. [PMID: 34894950 PMCID: PMC8667884 DOI: 10.1080/14756366.2021.2004592] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Carbonic anhydrase IX/XII (CA IX/XII), are cell-surface enzymes typically expressed by cancer cells as a form of adaptation to hypoxia and acidosis. It has been widely reported that these proteins play pivotal roles in cancer progression fostering cell migration, aggressiveness and resistance to first line chemo- and radiotherapies. CA IX has emerged as a promising target in cancer therapy and several approaches and families of compounds were characterised in the attempt to find optimal targeting by inhibiting of the high catalytic activity of the enzyme. In the present work, different cell lines representing glioblastoma, bladder and pancreatic cancer have been exploited to compare the inhibitory and antiproliferative effect of primary sulphonamide acetazolamide (AAZ), the Phase Ib/II clinical grade sulphonamide SLC-0111, and a membrane-impermeant positively charged, pyridinium-derivative (C18). New hints regarding the possibility to exploit CA inhibitors in these cancer types are proposed.
Collapse
Affiliation(s)
- Silvia Mussi
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Fuentes-Aguilar A, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Puerta A, Fernandes MX, Padrón JM, Petreni A, Nocentini A, Supuran CT, López Ó, Fernández-Bolaños JG. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 37:168-177. [PMID: 34894971 PMCID: PMC8667885 DOI: 10.1080/14756366.2021.1998026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Andrea Petreni
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
19
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
20
|
Yamali C, Inci Gul H, Ozli G, Angeli A, Ballar Kirmizibayrak P, Erbaykent Tepedelen B, Sakagami H, Bua S, Supuran CT. Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides. Bioorg Chem 2021; 115:105194. [PMID: 34365059 DOI: 10.1016/j.bioorg.2021.105194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
A series of novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides was synthesized and examined as inhibitors of cytosolic (human) hCA I and hCA II, and cancer-related transmembrane hCA IX and hCA XII isoenzymes. AC2 was the most selective inhibitor towards cancer-related hCA IX while AC8 and AC9 selectively inhibited hCA XII over off-target isoenzymes. Anticancer effects of the compounds were evaluated towards human oral squamous cell carcinoma (OSCC) cell lines, human mesenchymal normal oral cells, breast (MCF7), prostate (PC3), non-small cell lung carcinoma cells (A549), and non-tumoral fetal lung fibroblast cells (MRC5). Compounds moderately showed cytotoxicity towards cancer cell lines. Among others, AC6 showed cell-specific cytotoxic activity and induced apoptosis in a dose-dependent manner without a significant change in the cell cycle distribution of MCF7. These results suggest that pyrazole-3-carboxamides need further molecular modification to increase their anticancer drug candidate potency.
Collapse
Affiliation(s)
- Cem Yamali
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Gulsen Ozli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Burcu Erbaykent Tepedelen
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Uludag University, Bursa, Turkey
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, Saitama, Japan
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
21
|
Dar'in D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M. Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide - A new caspase-activating proapoptotic agent. Eur J Med Chem 2021; 222:113589. [PMID: 34147910 DOI: 10.1016/j.ejmech.2021.113589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.
Collapse
Affiliation(s)
- Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Gennady I Ostapenko
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, 50019, Italy.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
22
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
23
|
Sharonova T, Paramonova P, Kalinin S, Bunev A, Gasanov RЕ, Nocentini A, Sharoyko V, Tennikova TB, Dar'in D, Supuran CT, Krasavin M. Insertion of metal carbenes into the anilinic N-H bond of unprotected aminobenzenesulfonamides delivers low nanomolar inhibitors of human carbonic anhydrase IX and XII isoforms. Eur J Med Chem 2021; 218:113352. [PMID: 33774343 DOI: 10.1016/j.ejmech.2021.113352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/25/2023]
Abstract
Herein we report the synthesis of a set of thirty-four primary sulfonamides generated via formal N-H-insertion of metal carbenes into anilinic amino group of sulfanilamide and its meta-substituted analog. Obtained compounds were tested in vitro as inhibitors of four physiologically significant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Many of the synthesized sulfonamides displayed low nanomolar Ki values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Provided the promising activity profiles of the substances towards tumor-associated hCA IX and XII isozymes, single-concentration MTT test was performed for the entire set. Disappointingly, most of the discovered hCA inhibitors did not significantly suppress the growth of cancer cells either in normoxia or CoCl2 induced hypoxic conditions. The only two compounds exerting profound antiproliferative effect turned out to be modest hCA inhibitors. Their out of the range activity in cells is likely attributive to the presence of Michael acceptor substructure which can potentially act either through the inhibition of Thioredoxin reductases (TrxRs, EC 1.8.1.9) or nonspecific covalent binding to cell proteins.
Collapse
Affiliation(s)
- Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Polina Paramonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Rovshan Е Gasanov
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, 50019, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, 50019, Italy.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
24
|
Thacker PS, Srikanth D, Angeli A, Singh P, Chinchilli KK, Arifuddin M, Supuran CT. Coumarin-Thiourea Hybrids Show Potent Carbonic Anhydrase IX and XIII Inhibitory Action. ChemMedChem 2021; 16:1252-1256. [PMID: 33346945 DOI: 10.1002/cmdc.202000915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/19/2022]
Abstract
A series of coumarin-thiourea hybrids (4 a-o) has been synthesized, and the compounds have been evaluated against the tumour associated transmembrane isoform, human (h) carbonic anhydrase (CA) hCA IX and the less-explored cytosolic isoform, hCA XIII. All compounds exhibited potent inhibition of both isoforms, with KI values of <100 nM against hCA IX. Compound 4 b was the best inhibitor (KI =78.5 nM). All the compounds inhibited hCA XIII in the low-nanomolar to sub-micromolar range, with compound 4 b again showing the best inhibition (KI =76.3 nM). With compound 4 b as a lead, more-selective inhibitors of hCA IX and hCA XIII or dual hCA IX/XIII inhibitors might be developed.
Collapse
Affiliation(s)
- Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Danaboina Srikanth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Krishna Kartheek Chinchilli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
- Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad, 500001, Telangana State, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|