1
|
Uba AI. Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review. J Mol Recognit 2024:e3104. [PMID: 39389566 DOI: 10.1002/jmr.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| |
Collapse
|
2
|
Guo LY, Yang YL, Tong JB, Chang ZL, Gao P, Liu Y, Zhang YK, Xing XY. Computational Simulation Study of Potential Inhibition of c-Met Kinase Receptor by Phenoxy pyridine Derivatives: Based on QSAR, Molecular Docking, Molecular Dynamics. Chem Biodivers 2024; 21:e202400782. [PMID: 38923279 DOI: 10.1002/cbdv.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The mesenchymal-epithelial transition factor (c-Met) is a tyrosine kinase receptor protein, and excessive cell transformation can lead to cancer. Therefore, there is an urgent need to develop novel receptor tyrosine kinase inhibitors by inhibiting the activity of c-Met protein. In this study, 41 compounds are selected from the reported literature, and the interactions between phenoxy pyridine derivatives and tumor-associated proteins are systematically investigated using a series of computer-assisted drug design (CADD) methods, aiming to predict potential c-Met inhibitors with high activity. The Topomer CoMFA (q2=0.620, R2=0.837) and HQSAR (q2=0.684, R2=0.877) models demonstrate a high level of robustness. Further internal and external validation assessments show high applicability and accuracy. Based on the results of the Topomer CoMFA model, structural fragments with higher contribution values are identified and randomly combined using a fragment splice technique, result in a total of 20 compounds with predicted activities higher than the template molecules. Molecular docking results show that these compounds have good interactions and van der Waals forces with the target proteins. The results of molecular dynamics and ADMET predictions indicate that compounds Y4, Y5, and Y14 have potential as c-Met inhibitors. Among them, compound Y14 exhibits superior stability with a binding free energy of -165.18 KJ/mol. These studies provide a reference for the future design and development of novel compounds with c-Met inhibitory activity.
Collapse
Affiliation(s)
- Li-Yuan Guo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yu-Lu Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Ze-Lei Chang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Peng Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Yuan Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Ya-Kun Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| | - Xiao-Yu Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, 710021, China
| |
Collapse
|
3
|
Elkady H, Mahdy HA, Taghour MS, Dahab MA, Elwan A, Hagras M, Hussein MH, Ibrahim IM, Husein DZ, Elkaeed EB, Alsfouk AA, Metwaly AM, Eissa IH. New thiazolidine-2,4-diones as potential anticancer agents and apoptotic inducers targeting VEGFR-2 kinase: Design, synthesis, in silico and in vitro studies. Biochim Biophys Acta Gen Subj 2024; 1868:130599. [PMID: 38521471 DOI: 10.1016/j.bbagen.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 μM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 μM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 μM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mona H Hussein
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
4
|
Dahab MA, Mahdy HA, Elkady H, Taghour MS, Elwan A, Elkady MA, Elsakka EGE, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations. J Biomol Struct Dyn 2024; 42:4214-4233. [PMID: 37261471 DOI: 10.1080/07391102.2023.2219333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Eissa I, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, Ismail A, Elkady H, Metwaly AM. New Theobromine Apoptotic Analogue with Anticancer Potential Targeting the EGFR Protein: Computational and In Vitro Studies. ACS OMEGA 2024; 9:15861-15881. [PMID: 38617602 PMCID: PMC11007702 DOI: 10.1021/acsomega.3c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
AIM The aim of this study was to design and examine a novel epidermal growth factor receptor (EGFR) inhibitor with apoptotic properties by utilizing the essential structural characteristics of existing EGFR inhibitors as a foundation. METHOD The study began with the natural alkaloid theobromine and developed a new semisynthetic derivative (T-1-PMPA). Computational ADMET assessments were conducted first to evaluate its anticipated safety and general drug-likeness. Deep density functional theory (DFT) computations were initially performed to validate the three-dimensional (3D) structure and reactivity of T-1-PMPA. Molecular docking against the EGFR proteins was conducted to investigate T-1-PMPA's binding affinity and inhibitory potential. Additional molecular dynamics (MD) simulations over 200 ns along with MM-GPSA, PLIP, and principal component analysis of trajectories (PCAT) experiments were employed to verify the binding and inhibitory properties of T-1-PMPA. Afterward, T-1-PMPA was semisynthesized to validate the proposed design and in silico findings through several in vitro examinations. RESULTS DFT studies indicated T-1-PMPA's reactivity using electrostatic potential, global reactive indices, and total density of states. Molecular docking, MD simulations, MM-GPSA, PLIP, and ED suggested the binding and inhibitory properties of T-1-PMPA against the EGFR protein. The in silico ADMET predicted T-1-PMPA's safety and general drug-likeness. In vitro experiments demonstrated that T-1-PMPA effectively inhibited EGFRWT and EGFR790m, with IC50 values of 86 and 561 nM, respectively, compared to Erlotinib (31 and 456 nM). T-1-PMPA also showed significant suppression of the proliferation of HepG2 and MCF7 malignant cell lines, with IC50 values of 3.51 and 4.13 μM, respectively. The selectivity indices against the two cancer cell lines indicated the overall safety of T-1-PMPA. Flow cytometry confirmed the apoptotic effects of T-1-PMPA by increasing the total percentage of apoptosis to 42% compared to 31, and 3% in Erlotinib-treated and control cells, respectively. The qRT-PCR analysis further supported the apoptotic effects by revealing significant increases in the levels of Casp3 and Casp9. Additionally, T-1-PMPA controlled the levels of TNFα and IL2 by 74 and 50%, comparing Erlotinib's values (84 and 74%), respectively. CONCLUSION In conclusion, our study's findings suggest the potential of T-1-PMPA as a promising apoptotic anticancer lead compound targeting the EGFR.
Collapse
Affiliation(s)
- Ibrahim
H. Eissa
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G. Yousef
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalal Z. Husein
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharja 72511, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed Ismail
- Biochemistry
and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical
Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy
(Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy
and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical
Products Research Department, Genetic Engineering and Biotechnology
Research Institute, City of Scientific Research
and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
6
|
Nafie MS, Ali MA, Youssef MM. N-allyl quinoxaline derivative exhibited potent and selective cytotoxicity through EGFR/VEGFR-mediated apoptosis: In vitro and in vivo studies. J Biochem Mol Toxicol 2024; 38:e23690. [PMID: 38493304 DOI: 10.1002/jbt.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohab A Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Dorababu A. Role of heterocycles in inhibition of VEGFR-2 - a recent update (2019-2022). RSC Med Chem 2024; 15:416-432. [PMID: 38389872 PMCID: PMC10880944 DOI: 10.1039/d3md00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 02/24/2024] Open
Abstract
The literature reveals that oncogenic protein kinase inhibition has been proved to be a successful anticancer approach. The vascular endothelial growth factor receptor (VEGFR) kinase plays an important role in angiogenesis and metastasis. VEGFR-2 has an upper hand in the angiogenesis process. Vascular endothelial growth factor activates VEGFR-2 which initiates tumor angiogenesis. In addition, VEGFRs are associated with numerous other diseases. Hence, inhibition of VEGFRs is an attractive approach for cancer treatment. In view of this, researchers designed and discovered small molecular heterocycle-based VEGFR-2 inhibitors and some of them have been approved by the Food and Drug Administration (FDA). However, these VEGFR-2 inhibitors pose adverse side effects such as cardiovascular problems, diarrhea, and renal function impairment. Research indicates that combination of certain pharmacophores exhibits excellent VEGFR inhibitory activity. In particular, combination of heterocycles paved the way to efficient VEGFR inhibitors. In this review, the research focusing on VEGFR inhibitory activity has been discussed along with the structure-activity relationship. In addition to emphasizing the most potent molecule among the set of designed molecules, structural features responsible for such an activity are described. This review may aid in designing potent VEGFR inhibitors.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College Huvinahadagali 583219 India
| |
Collapse
|
8
|
Eissa IH, Elkady H, Rashed M, Elwan A, Hagras M, Dahab MA, Taghour MS, Ibrahim IM, Husein DZ, Elkaeed EB, Al-ghulikah HA, Metwaly AM, Mahdy HA. Discovery of new thiazolidine-2,4-dione derivatives as potential VEGFR-2 inhibitors: In vitro and in silico studies. Heliyon 2024; 10:e24005. [PMID: 38298627 PMCID: PMC10828660 DOI: 10.1016/j.heliyon.2024.e24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 μM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 μM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Hanan A. Al-ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
9
|
Eissa IH, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, El-Mahdy HA, Elkady H, Metwaly AM. Computer-Assisted Drug Discovery of a Novel Theobromine Derivative as an EGFR Protein-Targeted Apoptosis Inducer. Evol Bioinform Online 2023; 19:11769343231217916. [PMID: 38046652 PMCID: PMC10693208 DOI: 10.1177/11769343231217916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University. Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
10
|
Elkady H, Abuelkhir AA, Rashed M, Taghour MS, Dahab MA, Mahdy HA, Elwan A, Al-Ghulikah HA, Elkaeed EB, Ibrahim IM, Husein DZ, Metwaly A, Eissa IH. New thiazolidine-2,4-diones as effective anti-proliferative and anti-VEGFR-2 agents: Design, synthesis, in vitro, docking, MD simulations, DFT, ADMET, and toxicity studies. Comput Biol Chem 2023; 107:107958. [PMID: 37714080 DOI: 10.1016/j.compbiolchem.2023.107958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Abdelrahman A Abuelkhir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hanan A Al-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Ahmed Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
11
|
Eissa IH, Yousef RG, Asmaey MA, Elkady H, Husein DZ, Alsfouk AA, Ibrahim IM, Elkady MA, Elkaeed EB, Metwaly AM. Computer-assisted drug discovery (CADD) of an anti-cancer derivative of the theobromine alkaloid inhibiting VEGFR-2. Saudi Pharm J 2023; 31:101852. [PMID: 38028225 PMCID: PMC10663924 DOI: 10.1016/j.jsps.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A. Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, 71524, Assiut, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
12
|
Eissa IH, Yousef RG, Elkady H, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, Radwan MM, Metwaly AM. A Theobromine Derivative with Anticancer Properties Targeting VEGFR-2: Semisynthesis, in silico and in vitro Studies. ChemistryOpen 2023; 12:e202300066. [PMID: 37803417 PMCID: PMC10558427 DOI: 10.1002/open.202300066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
A computer-assisted drug design (CADD) approach was utilized to design a new acetamido-N-(para-fluorophenyl)benzamide) derivative of the naturally occurring alkaloid, theobromine, (T-1-APFPB), following the pharmacophoric features of VEGFR-2 inhibitors. The stability and reactivity of T-1-AFPB were assessed through density functional theory (DFT) calculations. Molecular docking assessments showed T-1-AFPB's potential to bind with and inhibit VEGFR-2. The precise binding of T-1-AFPB against VEGFR-2 with optimal energy was further confirmed through several molecular dynamics (MD) simulations, PLIP, MM-GBSA, and PCA studies. Then, T-1-AFPB (4-(2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamido)-N-(4-fluorophenyl)benzamide) was semi-synthesized and the in vitro assays showed its potential to inhibit VEGFR-2 with an IC50 value of 69 nM (sorafenib's IC50 was 56 nM) and to inhibit the growth of HepG2 and MCF-7 cancer cell lines with IC50 values of 2.24±0.02 and 3.26±0.02 μM, respectively. Moreover, T-1-AFPB displayed very high selectivity indices against normal Vero cell lines. Furthermore, T-1-AFPB induced early (from 0.72 to 19.12) and late (from 0.13 to 6.37) apoptosis in HepG2 cell lines. In conclusion, the combined computational and experimental approaches demonstrated the efficacy and safety of T-1-APFPB providing it as a promising lead VEGFR-2 inhibitor for further development aiming at cancer therapy.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design DepartmentFaculty of Pharmacy (Boys)Al-Azhar UniversityCairo11884Egypt
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design DepartmentFaculty of Pharmacy (Boys)Al-Azhar UniversityCairo11884Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design DepartmentFaculty of Pharmacy (Boys)Al-Azhar UniversityCairo11884Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical SciencesCollege of PharmacyAlMaarefa UniversityRiyadh13713Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical SciencesCollege of PharmacyPrincess Nourah bint Abdulrahman UniversityP.O. Box 84428Riyadh11671Saudi Arabia
| | - Dalal Z. Husein
- Chemistry DepartmentFaculty of ScienceNew Valley UniversityEl-Kharja72511Egypt
| | | | - Mohamed M. Radwan
- National Center for Natural Products ResearchUniversity of MississippiMississippiMS 38677USA
- Department of PharmacognosyFaculty of PharmacyAlexandria UniversityAlexandriaEgypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants DepartmentFaculty of Pharmacy (Boys)Al-Azhar UniversityCairo11884Egypt
- Biopharmaceutical Products Research DepartmentGenetic Engineering and Biotechnology Research InstituteCity of Scientific Research and Technological Applications (SRTA-City)AlexandriaEgypt
| |
Collapse
|
13
|
Ismail MMF, Shawer TZ, Ibrahim RS, Allam RM, Ammar YA. Novel quinoxaline-based VEGFR-2 inhibitors to halt angiogenesis. Bioorg Chem 2023; 139:106735. [PMID: 37531818 DOI: 10.1016/j.bioorg.2023.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt.
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, 11754 Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|
15
|
Elkady H, El-Dardir OA, Elwan A, Taghour MS, Mahdy HA, Dahab MA, Elkaeed EB, Alsfouk BA, Ibrahim IM, Husein DZ, Hafez EE, Darwish AMG, Metwaly AM, Eissa IH. Synthesis, biological evaluation and computer-aided discovery of new thiazolidine-2,4-dione derivatives as potential antitumor VEGFR-2 inhibitors. RSC Adv 2023; 13:27801-27827. [PMID: 37731835 PMCID: PMC10508263 DOI: 10.1039/d3ra05689a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 μM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 μM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Osama A El-Dardir
- Undergraduate Student, Faculty of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University Riyadh 13713 Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis, ALCRI, City of scientific research and technological applications New Borg El-Arab City Alexandria 21934 Egypt
| | - Amira M G Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University Alexandria Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
16
|
Elkaeed EB, Yousef RG, Elkady H, Mehany ABM, Alsfouk BA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. In silico, in vitro VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl)naphthalene-2-ol derivative. J Biomol Struct Dyn 2023; 41:7986-8001. [PMID: 36184591 DOI: 10.1080/07391102.2022.2127907] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 10/07/2022]
Abstract
In agreement with the general features of VEGFR-2 inhibitors, a new naphthalene analog (compound 7) has been designed and synthesized. The inhibitory potential of compound 7 was indicated by the proper binding and the perfect energy of -21.10 kcal/mol compared to sorafenib (-21.22) in the molecular docking studies. Next, six MD simulation studies over 100 ns (RMSD, RMSF, SASA, RoG, hydrogen bonding, and distance between the center of mass) confirmed the accurate interaction of compound 7 with the catalytic pocket of VEGFR-2. Similarly, an MM-GBSA established proper binding showing an exact total binding energy of -36.95 ± 3.03 kcal/Mol. Additionally, the MM-GBSA experiment indicated the vital amino acids in the binding process. Types and number of interactions of compound 7 with catalytic pocket of VEGFR-2 were determined through Protein-Ligand Interaction Profiler (PLIP). As a new compound, the DFT was employed to optimize the molecular structure of compound 7. The DFT experiments also verified the interaction features of compound 7 with the VEGFR-2 active site. In silico ADMET experiments revealed the general drug-likeness of compound 7. Fascinatingly, the in vitro examinations were consistent with the in silico experiments as compound 7 inhibited the VEGFR-2 enzyme with an IC50 value of 37 nM. Captivatingly, compound 7 inhibited both MCF-7 and HCT 116 cancer cells exhibiting IC50 values of 10.56 and 7.07 µM exhibiting excellent selectivity indexes of 9.04 and 13.50, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Elkady H, El-Adl K, Sakr H, Abdelraheem AS, Eissa SI, El-Zahabi MA. Novel promising benzoxazole/benzothiazole-derived immunomodulatory agents: Design, synthesis, anticancer evaluation, and in silico ADMET analysis. Arch Pharm (Weinheim) 2023; 356:e2300097. [PMID: 37379240 DOI: 10.1002/ardp.202300097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Adel S Abdelraheem
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sally I Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D, Kumar H. Thiazolidinedione-triazole conjugates: design, synthesis and probing of the α-amylase inhibitory potential. Future Med Chem 2023; 15:1273-1294. [PMID: 37551699 DOI: 10.4155/fmc-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 μmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 μmol ml-1, was identified as the best hit for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123029, India
| |
Collapse
|
19
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
20
|
Alanazi AS, Mirgany TO, Alsfouk AA, Alsaif NA, Alanazi MM. Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin-Purine Hybrids. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59030610. [PMID: 36984611 PMCID: PMC10051310 DOI: 10.3390/medicina59030610] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The traditional single-treatment strategy for cancer is frequently unsuccessful due to the complexity of cellular signaling. However, suppression of multiple targets is vital to defeat tumor cells. In this research, new compounds for the treatment of cancer were developed successfully as novel hybrid anticancer agents. Based on a molecular hybridization strategy, we designed hybrid agents that target multiple protein kinases to fight cancer cells. The proposed hybrid agents combined purine and isatin moieties in their structures with 4-aminobenzohydrazide and hydrazine as different linkers. Having those two moieties in one molecule enabled the capability to inhibit multiple kinases, such as human epidermal receptor (EGFR), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 2 (CDK2). Anticancer activity was evaluated by performing cytotoxicity assays, kinase inhibition assays, cell cycle analysis, and BAX, Bcl-2, Caspase 3 and Caspase 9 protein level determination assays. The results showed that the designed hybrids tackled the cancer by inhibiting both cell proliferation and metastasis. A molecular docking study was performed to predict possible binding interactions in the active site of the investigated protein kinase enzymes.
Collapse
Affiliation(s)
- Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Tebyan O Mirgany
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
S V, Kajal K, Mondal S, Wahan SK, Das Kurmi B, Das Gupta G, Patel P. Novel VEGFR-2 Kinase Inhibitors as Anticancer Agents: A Review Focusing on SAR and Molecular Docking Studies (2016-2021). Chem Biodivers 2023; 20:e202200847. [PMID: 36721068 DOI: 10.1002/cbdv.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Cancer growth, annexation, and metastatic spread are all aided by the formation of new blood vessels (angiogenesis). The commencement of the VEGF pathway leads to signal transduction that enhances endothelial cell survival, relocation, and divergence from pre-existing vasculature. The ability of solid malignancies to bloom and spread depends critically on their ability to establish their independent blood circulation (tumor angiogenesis). VEGFR is a major receptor tyrosine kinase that regulates angiogenesis, cell growth, and metastasis, diminishing apoptosis, cytoskeletal function, and other biological processes VEGFR has proven to be a remarkable focus for a variety of anticancer medicines in clinical studies. This Review explores the development of anti-VEGF-based antiangiogenic therapies having different scaffolds. This review had focused on SAR and docking studies of previously reported molecules.
Collapse
Affiliation(s)
- Vishakha S
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sitanshu Mondal
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Simranpreet K Wahan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
22
|
Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010097. [PMID: 36678593 PMCID: PMC9863562 DOI: 10.3390/ph16010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
A series of 12 compounds was designed and synthesized, based on 2-mercaptobenzoxazole derivatives containing either the substituted benzenes 4a-d, substituted isatins 5a-f, or heterocycles 6a-b. The in vitro antiproliferative activity of the compounds was evaluated against hepatocellular carcinoma (HepG2), mammary gland cancer (MCF-7), breast cancer (MDA-MB-231), and the epithelioid cervix carcinoma (HeLa) cancer cell lines. Compounds 4b, 4d, 5d, and 6b had the most potent antiproliferative activity, with IC50 values ranging from 2.14 to 19.34 µM, compared to the reference drugs, doxorubicin and sunitinib. Compound 6b revealed a remarkably broad antitumor activity pattern against HepG2 (IC50 6.83 µM), MCF-7 (IC50 3.64 µM), MDA-MB-231 (IC50 2.14 µM), and HeLa (IC50 5.18 µM). In addition, compound 6b showed potent inhibitory activities against EGFR, HER2, VEGFR2, and the CDK2 protein kinase enzymes, with IC50 values of 0.279, 0.224, 0.565, and 0.886 µM, respectively. Moreover, compound 6b induced caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Finally, a molecular docking simulation was performed for compound 6b to predict the potential ligand-protein interactions with the active sites of the EGFR, HER2, and VEGFR2 proteins.
Collapse
|
23
|
Eissa IH, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, Alesawy MS, Elkady H, Metwaly AM. Anticancer derivative of the natural alkaloid, theobromine, inhibiting EGFR protein: Computer-aided drug discovery approach. PLoS One 2023; 18:e0282586. [PMID: 36893122 PMCID: PMC9997933 DOI: 10.1371/journal.pone.0282586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/18/2023] [Indexed: 03/10/2023] Open
Abstract
A new semisynthetic derivative of the natural alkaloid, theobromine, has been designed as a lead antiangiogenic compound targeting the EGFR protein. The designed compound is an (m-tolyl)acetamide theobromine derivative, (T-1-MTA). Molecular Docking studies have shown a great potential for T-1-MTA to bind to EGFR. MD studies (100 ns) verified the proposed binding. By MM-GBSA analysis, the exact binding with optimal energy of T-1-MTA was also identified. Then, DFT calculations were performed to identify the stability, reactivity, electrostatic potential, and total electron density of T-1-MTA. Furthermore, ADMET analysis indicated the T-1-MTA's general likeness and safety. Accordingly, T-1-MTA has been synthesized to be examined in vitro. Intriguingly, T-1-MTA inhibited the EGFR protein with an IC50 value of 22.89 nM and demonstrated cytotoxic activities against the two cancer cell lines, A549, and HCT-116, with IC50 values of 22.49, and 24.97 μM, respectively. Interestingly, T-1-MTA's IC50 against the normal cell lines, WI-38, was very high (55.14 μM) indicating high selectivity degrees of 2.4 and 2.2, respectively. Furthermore, the flow cytometry analysis of A549 treated with T-1-MTA showed significantly increased ratios of early apoptosis (from 0.07% to 21.24%) as well as late apoptosis (from 0.73% to 37.97%).
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry & Drug Design Department, Al-Azhar University, Cairo, Egypt
- * E-mail: (IHE); (AMM); (HE)
| | - Reda G. Yousef
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry & Drug Design Department, Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z. Husein
- Faculty of Science, Chemistry Department, New Valley University, El-Kharja, Egypt
| | - Ibrahim M. Ibrahim
- Faculty of Science, Biophysics Department, Cairo University. Cairo, Egypt
| | - Mohamed S. Alesawy
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry & Drug Design Department, Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry & Drug Design Department, Al-Azhar University, Cairo, Egypt
- * E-mail: (IHE); (AMM); (HE)
| | - Ahmed M. Metwaly
- Faculty of Pharmacy (Boys), Pharmacognosy and Medicinal Plants Department, Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- * E-mail: (IHE); (AMM); (HE)
| |
Collapse
|
24
|
Hassan OM, Razzak Mahmood AA, Hamzah AH, Tahtamouni LH. Design, Synthesis, and Molecular Docking Studies of 5‐Bromoindole‐2‐Carboxylic Acid Hydrazone Derivatives: In Vitro Anticancer and VEGFR‐2 Inhibitory Effects. ChemistrySelect 2022. [DOI: 10.1002/slct.202203726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Omeed M. Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy University of Kirkuk Kirkuk Iraq
| | - Ammar A. Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy University of Baghdad Bagdad Iraq
| | - Ali H. Hamzah
- Department of Medicinal and Biological Chemistry University of Toledo Toledo Ohio USA
| | - Lubna H. Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science The Hashemite University Zarqa 13133 Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences Colorado State University Fort Collins 80523 Colorado USA
| |
Collapse
|
25
|
Elkaeed EB, Taghour MS, Mahdy HA, Eldehna WM, El-Deeb NM, Kenawy AM, A Alsfouk B, Dahab MA, Metwaly AM, Eissa IH, El-Zahabi MA. New quinoline and isatin derivatives as apoptotic VEGFR-2 inhibitors: design, synthesis, anti-proliferative activity, docking, ADMET, toxicity, and MD simulation studies. J Enzyme Inhib Med Chem 2022; 37:2191-2205. [PMID: 35975321 PMCID: PMC9387325 DOI: 10.1080/14756366.2022.2110869] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA city), Alexandria, Egypt
| | - Ahmed M Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute. City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
26
|
Taghour MS, Elkady H, Eldehna WM, El-Deeb NM, Kenawy AM, Elkaeed EB, Alsfouk AA, Alesawy MS, Metwaly AM, Eissa IH. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies. J Enzyme Inhib Med Chem 2022; 37:1903-1917. [PMID: 35801403 PMCID: PMC9272924 DOI: 10.1080/14756366.2022.2085693] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.
Collapse
Affiliation(s)
- Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ahmed M Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
27
|
Nossier ES, Alasfoury RA, Hagras M, El-Manawaty M, Sayed SM, Ibrahim IM, Elkady H, Eissa IH, Elzahabi HS. Modified pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as EGFRWT and EGFRT790M inhibitors: Design, synthesis, and anti-cancer evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Taghour MS, Mahdy HA, Gomaa MH, Aglan A, Eldeib MG, Elwan A, Dahab MA, Elkaeed EB, Alsfouk AA, Khalifa MM, Eissa IH, Elkady H. Benzoxazole derivatives as new VEGFR-2 inhibitors and apoptosis inducers: design, synthesis, in silico studies, and antiproliferative evaluation. J Enzyme Inhib Med Chem 2022; 37:2063-2077. [PMID: 35875937 PMCID: PMC9327782 DOI: 10.1080/14756366.2022.2103552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.
Collapse
Affiliation(s)
- Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Maher H Gomaa
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Aglan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
29
|
Belal A, Abdel Gawad NM, Mehany ABM, Abourehab MAS, Elkady H, Al-Karmalawy AA, Ismael AS. Design, synthesis and molecular docking of new fused 1 H-pyrroles, pyrrolo[3,2- d]pyrimidines and pyrrolo[3,2- e][1, 4]diazepine derivatives as potent EGFR/CDK2 inhibitors. J Enzyme Inhib Med Chem 2022; 37:1884-1902. [PMID: 35801486 PMCID: PMC9272933 DOI: 10.1080/14756366.2022.2096019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of 1H-pyrrole (6a-c, 8a-c), pyrrolo[3,2-d]pyrimidines (9a-c) and pyrrolo[3,2-e][1, 4]diazepines (11a-c) were designed and synthesised. These compounds were designed to have the essential pharmacophoric features of EGFR Inhibitors, they have shown anticancer activities against HCT116, MCF-7 and Hep3B cancer cells with IC50 values ranging from 0.009 to 2.195 µM. IC50 value of doxorubicin is 0.008 µM, compounds 9a and 9c showed IC50 values of 0.011 and 0.009 µM respectively against HCT-116 cells. Compound 8b exerted broad-spectrum activity against all tested cell lines with an IC50 value less than 0.05 µM. Compound 8b was evaluated against a panel of kinases. This compound potently inhibited CDK2/Cyclin A1, DYRK3 and GSK3 alpha kinases with 10-23% compared to imatinib (1-10%). It has also arrested the cell cycle of MCF-7 cells at the S phase. Its antiproliferative activity was further augmented by molecular docking into the active sites of EGFR and CDK2 cyclin A1.
Collapse
Affiliation(s)
- Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Nagwa M Abdel Gawad
- Medicinal Chemistry Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University- Egypt, New Damietta, Egypt
| | - Ahmed S Ismael
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
30
|
Yousef RG, Elwan A, Gobaara IMM, Mehany ABM, Eldehna WM, El-Metwally SA, A Alsfouk B, Elkaeed EB, Metwaly AM, Eissa IH. Anti-cancer and immunomodulatory evaluation of new nicotinamide derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: in vitro and in silico studies. J Enzyme Inhib Med Chem 2022; 37:2206-2222. [PMID: 35980113 PMCID: PMC9466619 DOI: 10.1080/14756366.2022.2110868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
New nicotinamide derivatives 6, 7, 10, and 11 were designed and synthesised based on the essential features of the VEGFR-2 inhibitors. Compound 10 revealed the highest anti-proliferative activities with IC50 values of 15.4 and 9.8 µM against HCT-116 and HepG2, respectively compared to sorafenib (IC50 = 9.30 and 7.40 µM). Compound 7 owned promising cytotoxic activities with IC50 values of 15.7 and 15.5 µM against the same cell lines, respectively. Subsequently, the VEGFR-2 inhibitory activities were assessed for the titled compounds to exhibit VEGFR-2 inhibition with sub-micromolar IC50 values. Moreover, compound 7 induced the cell cycle cessation at the cycle at %G2-M and G0-G1phases, and induced apoptosis in the HCT-116. Compounds 7 and 10 reduced the levels of TNF-α by 81.6 and 84.5% as well as IL-6 by 88.4 and 60.9%, respectively, compared to dexamethasone (82.4 and 93.1%). In silico docking, molecular dynamics simulations, ADMET, and toxicity studies were carried out.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibraheem M M Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Souad A El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Elkady H, Elwan A, El-Mahdy HA, Doghish AS, Ismail A, Taghour MS, Elkaeed EB, Eissa IH, Dahab MA, Mahdy HA, Khalifa MM. New benzoxazole derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: design, synthesis, anti-proliferative evaluation, flowcytometric analysis, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:397-410. [PMID: 34961427 PMCID: PMC8725875 DOI: 10.1080/14756366.2021.2015343] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed S. Doghish
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
32
|
Hagras M, Saleh MA, Ezz Eldin RR, Abuelkhir AA, Khidr EG, El-Husseiny AA, El-Mahdy HA, Elkaeed EB, Eissa IH. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:380-396. [PMID: 34923885 PMCID: PMC8725909 DOI: 10.1080/14756366.2021.2015342] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rogy R. Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | | | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
33
|
Kotb AR, Bakhotmah DA, Abdallah AE, Elkady H, Taghour MS, Eissa IH, El-Zahabi MA. Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Adv 2022; 12:33525-33539. [PMID: 36505721 PMCID: PMC9680624 DOI: 10.1039/d2ra06188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is still a dangerous disease with a high mortality rate all over the world. In our attempt to develop potential anticancer candidates, new quinazoline and phthalazine based compounds were designed and synthesized. The new derivatives were built in line with the pharmacophoric features of thalidomide. The new derivatives as well as thalidomide were examined against three cancer cell lines, namely: hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and prostate cancer (PC3). Then the effects on the expression levels of caspase-8, VEGF, NF-κB P65, and TNF-α in HepG-2 cells were evaluated. The biological data revealed the high importance of phthalazine based compounds (24a-c), which were far better than thalidomide with regard to the antiproliferative activity. 24b showed IC50 of 2.51, 5.80 and 4.11 μg mL-1 compared to 11.26, 14.58, and 16.87 μg mL-1 for thalidomide against the three cell lines respectively. 24b raised caspase-8 level by about 7 folds, compared to 8 folds reported for thalidomide. Also, VEGF level in HepG-2 cells treated with 24b was 185.3 pg mL-1, compared to 432.5 pg mL-1 in control cells. Furthermore, the immunomodulatory properties were proven to 24b, which reduced TNF-α level by approximately half. At the same time, NF-κB P65 level in HepG-2 cells treated with 24b was 76.5 pg mL-1 compared to 278.1 and 110.5 pg mL-1 measured for control cells and thalidomide treated HepG-2 cells respectively. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. This work suggests 24b as a promising lead compound for development of new immunomodulatory anticancer agents.
Collapse
Affiliation(s)
- Anas Ramadan Kotb
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Dina A. Bakhotmah
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Ibrahim. H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| |
Collapse
|
34
|
Elkaeed EB, Khalifa MM, Alsfouk BA, Alsfouk AA, El-Attar AAMM, Eissa IH, Metwaly AM. The Discovery of Potential SARS-CoV-2 Natural Inhibitors among 4924 African Metabolites Targeting the Papain-like Protease: A Multi-Phase In Silico Approach. Metabolites 2022; 12:1122. [PMID: 36422263 PMCID: PMC9693093 DOI: 10.3390/metabo12111122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 09/10/2024] Open
Abstract
Four compounds, hippacine, 4,2'-dihydroxy-4'-methoxychalcone, 2',5'-dihydroxy-4-methoxychalcone, and wighteone, were selected from 4924 African natural metabolites as potential inhibitors against SARS-CoV-2 papain-like protease (PLpro, PDB ID: 3E9S). A multi-phased in silico approach was employed to select the most similar metabolites to the co-crystallized ligand (TTT) of the PLpro through molecular fingerprints and structural similarity studies. Followingly, to examine the binding of the selected metabolites with the PLpro (molecular docking. Further, to confirm this binding through molecular dynamics simulations. Finally, in silico ADMET and toxicity studies were carried out to prefer the most convenient compounds and their drug-likeness. The obtained results could be a weapon in the battle against COVID-19 via more in vitro and in vivo studies.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdul-Aziz M. M. El-Attar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
35
|
( E)- N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide: A Novel Pyridine Derivative for Inhibiting Vascular Endothelial Growth Factor Receptor-2: Synthesis, Computational, and Anticancer Studies. Molecules 2022; 27:molecules27227719. [PMID: 36431818 PMCID: PMC9697799 DOI: 10.3390/molecules27227719] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
(E)-N-(3-(1-(2-(4-(2,2,2-Trifluoroacetamido)benzoyl)hydrazono)ethyl)phenyl)nicotinamide (compound 10) was designed as an antiangiogenic VEGFR-2 inhibitor with the essential pharmacophoric structural properties to interact with the catalytic pocket of VEGFR-2. The designed derivative was synthesized, and its structure was confirmed through Ms, elemental, 1H, and 13C spectral data. The potentiality of the designed pyridine derivative to bind with and inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme was indicated by molecular docking assessments. In addition, six molecular dynamic (MD) experiments proved its correct binding with VEGFR-2 over 100 ns. Additionally, the molecular mechanics energies, combined with the generalized born and surface area (MM-GBSA) analysis, identified the precise binding with optimum energy. To explore the stability and reactivity of the designed pyridine derivative, density functional theory (DFT) calculations, including electrostatic potential maps and total electron density, were carried out. Additionally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis demonstrated its general likeness and its safety. The designed compound was synthesized to evaluate its effects against VEGFR-2 protein, cancer, and normal cells. The in vitro results were concordant with the in silico results, because the new pyridine derivative (compound 10) displayed VEGFR-2 inhibition with an IC50 value of 65 nM and displayed potent cytotoxic properties against hepatic (HepG2) and breast (MCF-7) cancer cell lines with IC50 values of 21.00 and 26.10 μM, respectively; additionally, it exhibited high selectivity indices against the normal cell lines (W-38) of 1.55 and 1.25, respectively. The obtained results present compound 10 as a new lead VEGFR-2 inhibitor for further biological investigation and chemical modifications.
Collapse
|
36
|
Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. Structure Based Design of Some Novel 3-Methylquinoxaline Derivatives Through Molecular Docking and Pharmacokinetics Studies as Novel VEGFR-2 Inhibitors. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Taghour MS, Elkady H, Eldehna WM, El-Deeb N, Kenawy AM, Elkaeed EB, Alsfouk BA, Alesawy MS, Husein DZ, Metwaly AM, Eissa IH. Design, synthesis, anti-proliferative evaluation, docking, and MD simulations studies of new thiazolidine-2,4-diones targeting VEGFR-2 and apoptosis pathway. PLoS One 2022; 17:e0272362. [PMID: 36149902 PMCID: PMC9506633 DOI: 10.1371/journal.pone.0272362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
We report herein, the design and synthesis of thiazolidine-2,4-diones derivatives as new inhibitors for VEGFR-2. The designed members were assessed for their in vitro anticancer activity against four cancer cell lines; A549, Caco-2, HepG-2 and MDA-MB-231. Compound 14a showed the most potent effects against Caco-2, and HepG-2 cell lines (IC50 = of 1.5 and 31.5 μM, respectively). Next, the in vitro VEGFR-2 inhibitory activity, safety profiles and selectivity indices were examined for all the synthesized members against the normal Vero cell line. Compound 14a (the safest member against Caco-2 cell line) was further investigated for its ability to inhibit Caco-2 cells migration and healing. Moreover, the apoptotic induction of compound 14a against Caco-2 cell line was investigated by assessing against four apoptotic genes (Bcl2, Bcl-xl, TGF, and Survivin). The results revealed that compound 14a can exert apoptosis through significant reduction of Bcl2, Survivin, and TGF gene expression levels. Finally, deep computational studies including molecular docking, ADMET, toxicity studies, and MD simulation were carried out. Also, the DFT calculations were performed and discussed, and the results confirmed the inhibitory reactivity of 14a against VEGFR-2. Compound 14a is expected to be used as a potential lead in the development of new VEGFR-2 inhibitors with increased potency.
Collapse
Affiliation(s)
- Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nehal El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA City), Alexandria, Egypt
| | - Ahmed M. Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ahmed M. Metwaly
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA City), Alexandria, Egypt
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- * E-mail: (IHE); (AMM)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- * E-mail: (IHE); (AMM)
| |
Collapse
|
38
|
Elkaeed EB, Yousef RG, Khalifa MM, Ibrahim A, Mehany ABM, Gobaara IMM, Alsfouk BA, Eldehna WM, Metwaly AM, Eissa IH, El-Zahabi MA. Discovery of New VEGFR-2 Inhibitors: Design, Synthesis, Anti-Proliferative Evaluation, Docking, and MD Simulation Studies. Molecules 2022; 27:6203. [PMID: 36234734 PMCID: PMC9571953 DOI: 10.3390/molecules27196203] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Four new nicotinamide-based derivatives were designed as antiangiogenic VEGFR-2 inhibitors. The congeners were synthesized possessing the pharmacophoric essential features to bind correctly with the VEGFR-2 active pocket. All members were evaluated for their cytotoxic and VEGFR-2 inhibitory potentialities. Compound 6 was the most potent showingIC50 values of 9.3 ± 0.02 and 7.8 ± 0.025 µM against HCT-116 and HepG-2 cells, respectively, and IC50 of 60.83 nM regarding VEGFR-2 enzyme inhibition. Compound 6 arrested the growth of HCT-116 cells at the pre-G1 and G2-M phases. Further, it induced both early and late apoptosis. Additionally, compound 6 caused a significant decrease in TNF-α and IL6 by 66.42% and 57.34%, respectively. The considered compounds had similar docking performances to that of sorafenib against the VEGFR-2 (PDB ID: 2OH4). The correct binding of compound 6 with VEGFR-2 was validated using MD simulations, and MM-GPSA calculations.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Albaraa Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibraheem M M Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
39
|
Elkaeed EB, Yousef RG, Elkady H, Alsfouk AA, Husein DZ, Ibrahim IM, Metwaly AM, Eissa IH. New Anticancer Theobromine Derivative Targeting EGFR WT and EGFR T790M: Design, Semi-Synthesis, In Silico, and In Vitro Anticancer Studies. Molecules 2022; 27:molecules27185859. [PMID: 36144596 PMCID: PMC9500845 DOI: 10.3390/molecules27185859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/17/2022] Open
Abstract
Based on the pharmacophoric features of EGFR inhibitors, a new semisynthetic theobromine-derived compound was designed to interact with the catalytic pocket of EGFR. Molecular docking against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB: 3W2O) types of EGFR-TK indicated that the designed theobromine derivative had the potential to bind to that pocket as an antiangiogenic inhibitor. The MD and MM-GBSA experiments identified the exact binding with optimum energy and dynamics. Additionally, the DFT calculations studied electrostatic potential, stability, and total electron density of the designed theobromine derivative. Both in silico ADMET and toxicity analyses demonstrated its general likeness and safety. We synthesized the designed theobromine derivative (compound XI) which showed an IC50 value of 17.23 nM for EGFR inhibition besides IC50 values of 21.99 and 22.02 µM for its cytotoxicity against A549 and HCT-116 cell lines, respectively. Interestingly, compound XI expressed a weak cytotoxic potential against the healthy W138 cell line (IC50 = 49.44 µM, 1.6 times safer than erlotinib), exhibiting the high selectivity index of 2.2. Compound XI arrested the growth of A549 at the G2/M stage and increased the incidence of apoptosis.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| |
Collapse
|
40
|
Discovery of Some Heterocyclic Molecules as Bone Morphogenetic Protein 2 (BMP-2)-Inducible Kinase Inhibitors: Virtual Screening, ADME Properties, and Molecular Docking Simulations. Molecules 2022; 27:molecules27175571. [PMID: 36080338 PMCID: PMC9457949 DOI: 10.3390/molecules27175571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that have a vital role in the production of bone, cartilage, ligaments, and tendons. Tumors’ upregulation of bone morphogenetic proteins (BMPs) and their receptors are key features of cancer progression. Regulation of the BMP kinase system is a new promising strategy for the development of anti-cancer drugs. In this work, based on a careful literature study, a library of benzothiophene and benzofuran derivatives was subjected to different computational techniques to study the effect of chemical structure changes on the ability of these two scaffolds to target BMP-2 inducible kinase, and to reach promising candidates with proposed activity against BMP-2 inducible kinase. The results of screening against Lipinski’s and Veber’s Rules produced twenty-one outside eighty-four compounds having drug-like molecular nature. Computational ADMET studies favored ten compounds (11, 26, 27, 29, 30, 31, 34, 35, 65, and 72) with good pharmacokinetic profile. Computational toxicity studies excluded compound 34 to elect nine compounds for molecular docking studies which displayed eight compounds (26, 27, 29, 30, 31, 35, 65, and 72) as promising BMP-2 inducible kinase inhibitors. The nine fascinating compounds will be subjected to extensive screening against serine/threonine kinases to explore their potential against these critical proteins. These promising candidates based on benzothiophene and benzofuran scaffolds deserve further clinical investigation as BMP-2 kinase inhibitors for the treatment of cancer.
Collapse
|
41
|
Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, and MM-PBSA Calculations for the Discovery of Potential Natural SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine. J CHEM-NY 2022. [DOI: 10.1155/2022/7270094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Continuing our antecedent work against COVID-19, a set of 5956 compounds of traditional Chinese medicine have been virtually screened for their potential against SARS-CoV-2 helicase (PDB ID: 5RMM). Initially, a fingerprint study with VXG, the ligand of the target enzyme, disclosed the similarity of 187 compounds. Then, a molecular similarity study declared the most similar 40 compounds. Subsequently, molecular docking studies were carried out to examine the binding modes and energies. Then, the most appropriate 26 compounds were subjected to in silico ADMET and toxicity studies to select the most convenient inhibitors to be: (1R,2S)-ephedrine (57), (1R,2S)-norephedrine (59), 2-(4-(pyrrolidin-1-yl)phenyl)acetic acid (84), 1-phenylpropane-1,2-dione (195), 2-methoxycinnamic acid (246), 2-methoxybenzoic acid (364), (R)-2-((R)-5-oxopyrrolidin-3-yl)-2-phenylacetic acid (405), (Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one (533), 8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone (637), 3-((1R,2S)-2-(dimethylamino)-1-hydroxypropyl)phenol (818), (R)-2-ethyl-4-(1-hydroxy-2-(methylamino)ethyl)phenol (5159), and (R)-2-((1S,2S,5S)-2-benzyl-5-hydroxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol (5168). Among the selected 12 compounds, the metabolites, compound 533 showed the best docking scores. Interestingly, the MD simulation studies for compound 533, the one with the highest docking score, over 100 ns showed its correct binding to SARS-CoV-2 helicase with low energy and optimum dynamics. Finally, MM-PBSA studies showed that 533 bonded favorably to SARS-CoV-2 helicase with a free energy value of −83 kJ/mol. Further, the free energy decomposition study determined the essential amino acid residues that contributed favorably to the binding process. The obtained results give a huge hope to find a cure for COVID-19 through further in vitro and in vivo studies for the selected compounds.
Collapse
|
42
|
Elwan A, Abdallah AE, Mahdy HA, Dahab MA, Taghour MS, Elkaeed EB, Mehany ABM, Nabeeh A, Adel M, Alsfouk AA, Elkady H, Eissa IH. Modified Benzoxazole-Based VEGFR-2 Inhibitors and Apoptosis Inducers: Design, Synthesis, and Anti-Proliferative Evaluation. Molecules 2022; 27:5047. [PMID: 35956997 PMCID: PMC9370530 DOI: 10.3390/molecules27155047] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023] Open
Abstract
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.
Collapse
Affiliation(s)
- Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed Adel
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
43
|
KÜÇÜK C, YURDAKUL S, CELİK S, ERDEM B. Experimental and DFT studies of 2-Methyl-quinoxaline and its Silver (I) complex: Non-covalent interaction analysis, antimicrobial activity and molecular docking study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Salem MG, El-Maaty DMA, El-Deen YIM, Elesawy BH, Askary AE, Saleh A, Saied EM, Behery ME. Novel 1,3-Thiazole Analogues with Potent Activity against Breast Cancer: A Design, Synthesis, In Vitro, and In Silico Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154898. [PMID: 35956848 PMCID: PMC9370021 DOI: 10.3390/molecules27154898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 01/23/2023]
Abstract
Breast cancer is the most common cancer in women, responsible for over half a million deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing heterocyclic compounds, implying the importance of such compounds in drug discovery. Among heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of pharmacological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was substituted as a key reaction step. The activity of synthesized compounds was screened against the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and 12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77 and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed in silico molecular docking studies affirmed that this class of compounds possesses a considerable binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a promising lead compound for developing potent anti-breast cancer compounds.
Collapse
Affiliation(s)
- Manar G. Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.G.S.); (Y.I.M.E.-D.)
| | - Dina M. Abu El-Maaty
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 415222, Egypt;
| | - Yassmina I. Mohey El-Deen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.G.S.); (Y.I.M.E.-D.)
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Correspondence: (E.M.S.); (M.E.B.)
| | - Mohammed El Behery
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
- Correspondence: (E.M.S.); (M.E.B.)
| |
Collapse
|
45
|
The Assessment of Anticancer and VEGFR-2 Inhibitory Activities of a New 1H-Indole Derivative: In Silico and In Vitro Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10071391] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Corresponding to the reported features of anti-VEGFR-2-approved compounds, a new 1H-indole derivative (compound 7) was designed. The inhibitory potential of the designed compound was revealed via a molecular docking study that showed the appropriate binding. Then, MD simulation (six studies) over a period of 100 ns was performed to confirm the precise binding and optimum energy. Additionally, MM-GBSA reaffirmed the perfect binding, exhibiting a total precise energy of −40.38 Kcal/Mol. The MM-GBSA experiments named the essential amino acids in the protein–ligand interaction, employing the binding energy decomposition and revealing the diversity of interactions of compound 7 inside the VEGFR-2 enzyme. As compound 7 is new, DFT experiments were utilized for molecular structure optimization. Additionally, the DFT results validated the coherent interaction of compound 7 with the VEGFR-2 enzyme. A good value of drug-likeness of compound 7 was acknowledged via in silico ADMET studies. Interestingly, the experimental in vitro prohibitory potential of compound 7 was better than that of sorafenib, demonstrating an IC50 value of 25 nM. Notably, the strong inhibitory effects of compound 10 against two cancer cell lines (MCF-7 and HCT 116) were established with IC50 values of 12.93 and 11.52 μM, disclosing high selectivity indexes of 6.7 and 7.5, respectively.
Collapse
|
46
|
Azab AE, Alesawy MS, Eldehna WM, Elwan A, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazoline derivatives as vascular endothelial growth factor receptor-2 inhibitors and apoptosis inducers: Design, synthesis, docking, and antiproliferative evaluation. Arch Pharm (Weinheim) 2022; 355:e2200133. [PMID: 35822666 DOI: 10.1002/ardp.202200133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.
Collapse
Affiliation(s)
- Ahmed E Azab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Yousef RG, Eldehna WM, Elwan A, Abdelaziz AS, Mehany ABM, Gobaara IMM, Alsfouk BA, Elkaeed EB, Metwaly AM, Eissa IH. Design, Synthesis, In Silico and In Vitro Studies of New Immunomodulatory Anticancer Nicotinamide Derivatives Targeting VEGFR-2. Molecules 2022; 27:molecules27134079. [PMID: 35807326 PMCID: PMC9268560 DOI: 10.3390/molecules27134079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.
Collapse
Affiliation(s)
- Reda G. Yousef
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Abdelaziz S. Abdelaziz
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Ibraheem M. M. Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
- Correspondence: (A.M.M.); (I.H.E.)
| |
Collapse
|
48
|
Multi-Step In Silico Discovery of Natural Drugs against COVID-19 Targeting Main Protease. Int J Mol Sci 2022; 23:ijms23136912. [PMID: 35805916 PMCID: PMC9266348 DOI: 10.3390/ijms23136912] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.
Collapse
|
49
|
Eissa IH, El-Haggar R, Dahab MA, Ahmed MF, Mahdy HA, Alsantali RI, Elwan A, Masurier N, Fatahala SS. Design, synthesis, molecular modeling and biological evaluation of novel Benzoxazole-Benzamide conjugates via a 2-Thioacetamido linker as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers. J Enzyme Inhib Med Chem 2022; 37:1587-1599. [PMID: 35637622 PMCID: PMC9176662 DOI: 10.1080/14756366.2022.2081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Samar S Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
50
|
Yousef RG, Ibrahim A, Khalifa MM, Eldehna WM, Gobaara IMM, Mehany ABM, Elkaeed EB, Alsfouk AA, Metwaly AM, Eissa IH. Discovery of new nicotinamides as apoptotic VEGFR-2 inhibitors: virtual screening, synthesis, anti-proliferative, immunomodulatory, ADMET, toxicity, and molecular dynamic simulation studies. J Enzyme Inhib Med Chem 2022; 37:1389-1403. [PMID: 35577416 PMCID: PMC9116259 DOI: 10.1080/14756366.2022.2070744] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A library of modified VEGFR-2 inhibitors was designed as VEGFR-2 inhibitors. Virtual screening was conducted for the hypothetical library using in silico docking, ADMET, and toxicity studies. Four compounds exhibited high in silico affinity against VEGFR-2 and an acceptable range of the drug-likeness. These compounds were synthesised and subjected to in vitro cytotoxicity assay against two cancer cell lines besides VEGFR-2 inhibitory determination. Compound D-1 showed cytotoxic activity against HCT-116 cells almost double that of sorafenib. Compounds A-1, C-6, and D-1 showed good IC50 values against VEGFR-2. Compound D-1 markedly increased the levels of caspase-8 and BAX expression and decreased the anti-apoptotic Bcl-2 level. Additionally, compound D-1 caused cell cycle arrest at pre-G1 and G2-M phases in HCT-116 cells and induced apoptosis at both early and late apoptotic stages. Compound D-1 decreased the level of TNF-α and IL6 and inhibited TNF-α and IL6. MD simulations studies were performed over 100 ns.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Albaraa Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ibraheem M M Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|