1
|
Mohamed HR, Hamed MM, El-Wakil EA, Okasha H. GC-MS analysis, anti-inflammatory and anti-proliferative properties of the aerial parts of three Mesembryanthemum spp.. Toxicol Rep 2024; 13:101829. [PMID: 39735355 PMCID: PMC11681886 DOI: 10.1016/j.toxrep.2024.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Background Due to their variability and safety, widespread research on phytochemicals continually encourages researchers to study various plants for their potential health benefits. Objectives This study aims to explore the phytochemical constituents of the aerial parts of three Mesembryanthemum spp.; M. nodiflorum, M. forsskaolii, and M. cordifolium existed in Egyptian nature using GC-MS analysis and studying their different biological activities in correlation to computational analysis. Methods Investigation of in vitro anti-inflammatory and anticancer activities and in silico studies of identified major compounds on VEGFR. Results: Thirty-three compounds were identified, octadecanoic acid, 2, 3-dihydroxypropyl ester, and 1H-Indene, 1-hexadecyl-2, 3-dihydro are the common compounds in the three extracts with different percentages. M. forsskaolii is the most extract with diverse phytoconstituents showing significant anticancer properties against the CACO2 cells with IC50 value equal to 31.78 µg/mL. Nevertheless, all extracts showed potent anti-inflammatory activity at high concentrations (500 µg/mL). M. nodiflorum, M. forsskaolii, and M. cordifolium had IC50 on HepG2 cells equal to 73.64, 88.18, and 87.82 µg/mL. Molecular findings showed the three extracts had distinct effects on apoptosis modulation in HepG2 cells. Conclusion The findings suggest that the studied extracts had potential therapeutic properties as anti-inflammatory and anticancer agents, supported by an in-silico interaction study.
Collapse
Affiliation(s)
- Heba R. Mohamed
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Manal M. Hamed
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Eman A. El-Wakil
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| | - Hend Okasha
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt
| |
Collapse
|
2
|
Abdallah AE, Eissa IH, Mehany ABM, Celik I, Sakr H, Metwaly KH, El-Adl K, El-Zahabi MA. Discovery of New Immunomodulatory Anticancer Thalidomide Analogs: Design, Synthesis, Biological Evaluation and In Silico Studies. Chem Biodivers 2024:e202401768. [PMID: 39540225 DOI: 10.1002/cbdv.202401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
New thalidomide analogs have been designed and synthesized by hybridizing the immunomodulatory gutarimide moiety with three antiproliferative nuclei: quinazolinedione, phthalazinedione, and quinoxalinone. The biological results revealed the strong impact of quinazoline derivatives 7 a and 28, and phthalazine based 20 a against HepG-2, MCF-7, PC3, and HCT-116 cell lines, compared to thalidomide. In particular, compound 20 a was the most promising as it had far better biological activity than thalidomide with regard to inhibition of TNF-α, IL-6, caspase 3, COX-I/II, and VEGFR-2, as well as cell cycle arrest, and apoptosis rate enhancement in MCF-7 cells, the most sensitive cell line to the current new molecules. Compound 20 a caused reduction in levels of TNF-α and IL-6 by 75.22 % and 82.51 %, respectively. It elevated the caspase-3 level by 7.21-fold. Furthermore, IC50 against COX-I, COX-II, and VEGFR-2 were 0.65 μM, 0.33 μM, and 232 nM, respectively. In addition, it raised the apoptosis rate from 65.65 % to 99.89 %. Moreover, 20 a was further examined through a docking study and a 200 ns molecular dynamics simulation for its complex with VEGFR-2, along with computational ADME properties. This work suggests the high significance of compounds 20 a, 7 a and 28, as lead compounds for development of new effective immunomodulatory antitumor drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - K H Metwaly
- Center of Plasma Technology, Al-Azhar University, 11884, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
3
|
Saleh Al Ward MM, Abdallah AE, Zayed MF, Ayyad RR, Abdelghany TM, Bakhotmah DA, El-Zahabi MA. New immunomodulatory anticancer quinazolinone-based thalidomide analogs: design, synthesis and biological evaluation. Future Med Chem 2024; 16:2523-2533. [PMID: 39530517 PMCID: PMC11622738 DOI: 10.1080/17568919.2024.2419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The current work is an extension to our previous work for the development of new thalidomide analogs.Materials & methods: Quinazolinone-based molecules carrying a glutarimide moiety have been designed, synthesized and biologically evaluated for immunomodulatory and anticancer activity.Results: Compounds 7d and 12 showed considerable immunomodulatory properties in comparison to thalidomide. 7d and 12 significantly reduced TNF-α levels in HepG-2 cells from 162.5 to 57.4 pg/ml and 49.2 pg/ml, respectively, compared with 53.1 pg/ml reported for thalidomide. Moreover, they caused 69.33 and 77.74% reduction in NF-κB P65, respectively, compared with 60.26% reduction for thalidomide. Similarly, they reduced VEGF from 432.5 to 161.3 pg/ml and 132.8 pg/ml, respectively, in comparison to 153.2 pg/ml reported for thalidomide. The two new derivatives, 7d and 12 also showed about eightfold increases in caspase-8 levels in cells treated with them. These results were slightly better than those of thalidomide. The obtained results revealed that Compound 12 had better immunomodulatory properties than thalidomide, with stronger effects on TNF-α, NF-κB P65, VEGF and caspase-8.Conclusion: This work indicates that compounds 7d and 12 have interesting biological properties that should be further evaluated and modified in order to develop clinically useful thalidomide analogs.
Collapse
Affiliation(s)
- Maged Mohammed Saleh Al Ward
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed F Zayed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- College of Pharmacy, University of Hilla, Babylon, Iraq
| | - Tamer M Abdelghany
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, 11785, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | | | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
4
|
Zhonghao J, Fan Y. New advances in the treatment of intermediate and advanced hepatocellular carcinoma. Front Oncol 2024; 14:1430991. [PMID: 39376988 PMCID: PMC11456399 DOI: 10.3389/fonc.2024.1430991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the complexity and variability of the disease, there are major challenges in the treatment of HCC in its intermediate and advanced stages; despite advances in various treatment modalities, there are still gaps in our understanding of effective therapeutic strategies. Key findings from several studies have shown that the combination of immunotherapy and targeted therapy has a synergistic anti-tumor effect, which can significantly enhance efficacy with a favorable safety profile. In addition, other studies have identified potential biomarkers of therapeutic response, such as tumor protein 53 (TP53) and CTNNB1 (encoding β-conjugated proteins), thus providing personalized treatment options for patients with intermediate and advanced hepatocellular carcinoma. The aim of this article is to review the recent advances in the treatment of intermediate and advanced HCC, especially targeted immune-combination therapy, chimeric antigen receptor T cell therapy (CAR-T cell therapy), and gene therapy for these therapeutic options that fill in the gaps in our knowledge of effective treatment strategies, providing important insights for further research and clinical practice.
Collapse
|
5
|
Ayoup MS, Rabee AR, Abdel-Hamid H, Amer A, Abu-Serie MM, Ashraf S, Ghareeb DA, Ibrahim RS, Hawsawi MB, Negm A, Ismail MMF. Design and Synthesis of Quinoxaline Hybrids as Modulators of HIF-1a, VEGF, and p21 for Halting Colorectal Cancer. ACS OMEGA 2024; 9:24643-24653. [PMID: 38882127 PMCID: PMC11170630 DOI: 10.1021/acsomega.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
A library of 16 3-benzyl-N 1-substituted quinoxalin-2-ones was synthesized as N 1-substituted quinoxalines and quinoxaline-triazole hybrids via click reaction. These compounds were tested for their anticancer activity via MTT assay on HCT-116 and normal colonocyte cell lines to assess their cytotoxic potentials and safety profiles. Overall, compounds 6, 9, 14, and 20 were found to be promising anticolorectal cancer agents; they exhibited remarkable cytotoxicity (IC50 0.05-0.07 μM) against HCT-116 cells within their safe doses (EC100) on normal colon cells. Their pronounced anticancer activities were observed as severe morphological alterations and shrinkage of the treated cancer cells. Besides, qRT-PCR analysis was conducted showing the potential of the promising hits to downregulate HIF-1a, VEGF, and BCL-2 as well as their ability to enhance the expression of proapoptotic genes p21, p53, and BAX in HCT-116 cells. In silico prediction revealed that most of our compounds agree with Lipinski and Veber parameters of rules, in addition to remarkable medicinal chemistry and drug-likeness parameters with no CNS side effects. Interestingly, docking studies of the compounds in the VEGFR-2' active site showed significant affinity toward the essential amino acids, which supported the biological results.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ahmed R Rabee
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria 21934, Egypt
| | - Samah Ashraf
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria 21934, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
6
|
Montero V, Montana M, Carré M, Vanelle P. Quinoxaline derivatives: Recent discoveries and development strategies towards anticancer agents. Eur J Med Chem 2024; 271:116360. [PMID: 38614060 DOI: 10.1016/j.ejmech.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.
Collapse
Affiliation(s)
- Vincent Montero
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Marseille CEDEX 05, 13385, France.
| | - Marc Montana
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Oncopharma, Hôpital Nord, Marseille, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille, 13005, France
| |
Collapse
|
7
|
Abdel-Mohsen HT, Anwar MM, Ahmed NS, Abd El-Karim SS, Abdelwahed SH. Recent Advances in Structural Optimization of Quinazoline-Based Protein Kinase Inhibitors for Cancer Therapy (2021-Present). Molecules 2024; 29:875. [PMID: 38398626 PMCID: PMC10892255 DOI: 10.3390/molecules29040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complicated, multifaceted disease that can impact any organ in the body. Various chemotherapeutic agents have a low selectivity and are very toxic when used alone or in combination with others. Resistance is one of the most important hurdles that develop due to the use of many anticancer therapeutics. As a result, treating cancer requires a target-specific palliative care strategy. Remarkable scientific discoveries have shed light on several of the molecular mechanisms underlying cancer, resulting in the development of various targeted anticancer agents. One of the most important heterocyclic motifs is quinazoline, which has a wide range of biological uses and chemical reactivities. Newer, more sophisticated medications with quinazoline structures have been found in the last few years, and great strides have been made in creating effective protocols for building these pharmacologically active scaffolds. A new class of chemotherapeutic agents known as quinazoline-based derivatives possessing anticancer properties consists of several well-known compounds that block different protein kinases and other molecular targets. This review highlights recent updates (2021-2024) on various quinazoline-based derivatives acting against different protein kinases as anticancer chemotherapeutics. It also provides guidance for the design and synthesis of novel quinazoline analogues that could serve as lead compounds.
Collapse
Affiliation(s)
- Heba T. Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A & M University, Prairie View, TX 77446, USA
| |
Collapse
|
8
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
9
|
Haffez H, Elsayed NA, Ahmed MF, Fatahala SS, Khaleel EF, Badi RM, Elkaeed EB, El Hassab MA, Hammad SF, Eldehna WM, Masurier N, El-Haggar R. Novel N-Arylmethyl-aniline/chalcone hybrids as potential VEGFR inhibitors: synthesis, biological evaluations, and molecular dynamic simulations. J Enzyme Inhib Med Chem 2023; 38:2278022. [PMID: 37982203 PMCID: PMC11003488 DOI: 10.1080/14756366.2023.2278022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
Significant advancements have been made in the domain of targeted anticancer therapy for the management of malignancies in recent times. VEGFR-2 is characterised by its pivotal involvement in angiogenesis and subsequent mechanisms that promote tumour cells survival. Herein, novel N-arylmethyl-aniline/chalcone hybrids 5a-5n were designed and synthesised as potential anticancer and VEGFR-2 inhibitors. The anticancer activity was evaluated at the NCI-USA, resulting in the identification of 10 remarkably potent molecules 5a-5j that were further subjected to the five-dose assays. Thereafter, they were explored for their VEGFR-2 inhibitory activity where 5e and 5h emerged as the most potent inhibitors. 5e and 5h induced apoptosis with cell cycle arrest at the SubG0-G1 phase within HCT-116 cells. Moreover, their impact on some key apoptotic genes was assessed, suggesting caspase-dependent apoptosis. Furthermore, molecular docking and molecular dynamics simulations were conducted to explore the binding modes and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo, Egypt
| | - Nosaiba A. Elsayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sherif F. Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Egypt Alexandria
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| |
Collapse
|
10
|
Moradi M, Mousavi A, Emamgholipour Z, Giovannini J, Moghimi S, Peytam F, Honarmand A, Bach S, Foroumadi A. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur J Med Chem 2023; 259:115626. [PMID: 37453330 DOI: 10.1016/j.ejmech.2023.115626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.
Collapse
Affiliation(s)
- Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Johanna Giovannini
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Honarmand
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Ismail MMF, Shawer TZ, Ibrahim RS, Abusaif MS, Kamal MM, Allam RM, Ammar YA. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers. RSC Adv 2023; 13:31908-31924. [PMID: 37915441 PMCID: PMC10616755 DOI: 10.1039/d3ra05066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Mostafa S Abusaif
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| | - Mona M Kamal
- Department of Pharmacology, Faculty of Pharmacy (Girls), 11754 Al-Azhar University Cairo Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre 12622 Dokki Cairo Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
12
|
Ismail MMF, Shawer TZ, Ibrahim RS, Allam RM, Ammar YA. Novel quinoxaline-based VEGFR-2 inhibitors to halt angiogenesis. Bioorg Chem 2023; 139:106735. [PMID: 37531818 DOI: 10.1016/j.bioorg.2023.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt.
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), 11754 Al-Azhar University, Cairo, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, 11754 Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Elkady H, El-Adl K, Sakr H, Abdelraheem AS, Eissa SI, El-Zahabi MA. Novel promising benzoxazole/benzothiazole-derived immunomodulatory agents: Design, synthesis, anticancer evaluation, and in silico ADMET analysis. Arch Pharm (Weinheim) 2023; 356:e2300097. [PMID: 37379240 DOI: 10.1002/ardp.202300097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Adel S Abdelraheem
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sally I Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Mabrouk RR, Abdallah AE, Mahdy HA, El-Kalyoubi SA, Kamal OJ, Abdelghany TM, Zayed MF, Alshaeri HK, Alasmari MM, El-Zahabi MA. Design, Synthesis, and Biological Evaluation of New Potential Unusual Modified Anticancer Immunomodulators for Possible Non-Teratogenic Quinazoline-Based Thalidomide Analogs. Int J Mol Sci 2023; 24:12416. [PMID: 37569792 PMCID: PMC10418715 DOI: 10.3390/ijms241512416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Sixteen new thalidomide analogs were synthesized. The new candidates showed potent in vitro antiproliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). It was found that compounds XII, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XIVb, and XIVc showed IC50 values ranging from 2.03 to 13.39 µg/mL, exhibiting higher activities than thalidomide against all tested cancer cell lines. Compound XIIIa was the most potent candidate, with an IC50 of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively. Furthermore, compound XIVc reduced the expression of NFκB P65 levels in HepG-2 cells from 278.1 pg/mL to 63.1 pg/mL compared to 110.5 pg/mL for thalidomide. Moreover, compound XIVc induced an eightfold increase in caspase-8 levels with a simultaneous decrease in TNF-α and VEGF levels in HepG-2 cells. Additionally, compound XIVc induced apoptosis and cell cycle arrest. Our results reveal that the new candidates are potential anticancer candidates, particularly XIIIa and XIVc. Consequently, they should be considered for further evaluation for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Reda R. Mabrouk
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
- Directorate of Health Affairs in Buhaira-Clinical Research Department, Ministry of Health and Population, Damanhour 22511, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| | - Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Port Said University, Port Said 42511, Egypt;
| | - Omar Jamal Kamal
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21461, Saudi Arabia;
| | - Tamer M. Abdelghany
- Pharmacology & Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
| | - Mohamed F. Zayed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Heba K. Alshaeri
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Moudi M. Alasmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21461, Saudi Arabia;
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 21423, Saudi Arabia
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| |
Collapse
|
15
|
Abdallah AE, Eissa IH, Mehany AB, Sakr H, Atwa A, El-Adl K, El-Zahabi MA. Immunomodulatory quinazoline-based thalidomide analogs: Design, synthesis, apoptosis and anticancer evaluations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Ghannam IAY, El Kerdawy AM, Mounier MM, Abo-Elfadl MT, Ali IH. Novel 2-oxo-2-phenylethoxy and benzyloxy diaryl urea hybrids as VEGFR-2 inhibitors: Design, synthesis, and anticancer evaluation. Arch Pharm (Weinheim) 2023; 356:e2200341. [PMID: 36398495 DOI: 10.1002/ardp.202200341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
Two series of diaryl urea derivatives, 6a-k and 7a-n, were synthesized. All the newly synthesized compounds were tested against the NCI (US) cancer cell lines via SRB assay. The p-chloro-m-trifluoromethyl phenyl derivatives 6e-g and 7e-g showed the most potent cytotoxic activity with a GI50 value range of 1.2-15.9 µM. Furthermore, the p-fluorobenzyloxy diaryl urea derivative 7g revealed the most potent cytotoxicity against eight cancer cell lines in the MTT assay with IC50 values below 5 µM. Compounds 6a-k and 7a-n were tested for their vascular endothelial growth factor receptor-2 (VEGFR-2) kinase inhibitory activities. The p-chloro-m-trifluoromethyl diaryl urea benzyloxy derivatives 7e-i and the p-methoxydiaryl urea benzyloxy derivatives 7k, 7l, and 7n were found to be the most active compounds as VEGFR-2 inhibitors in the benzyloxy series 7, with an IC50 range of 0.09-4.15 µM. In the 2-oxo-2-phenylethoxy series 6, compounds 6e-g and 6i were reported with IC50 values of 0.94, 0.54, 2.71, and 4.81 µM, respectively. Moreover, compounds 7e and 7g induced apoptosis, causing cell cycle arrest in the G2/M phase. In addition, 7g showed an antimigratory effect in A-375 cells and inhibited the VEGFR-2 expression in an immunohistofluorescence study. Molecular docking simulations on VEGFR-2 as well as ADME properties prediction were also performed.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Egypt
| | - Marwa M Mounier
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Egypt.,Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
17
|
Kotb AR, Abdallah AE, Elkady H, Eissa IH, Taghour MS, Bakhotmah DA, Abdelghany TM, El-Zahabi MA. Design, synthesis, anticancer evaluation, and in silico ADMET analysis of novel thalidomide analogs as promising immunomodulatory agents †. RSC Adv 2023; 13:10488-10502. [PMID: 37021105 PMCID: PMC10069230 DOI: 10.1039/d3ra00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Immunomodulatory medications like thalidomide and its analogs prevent the production of some proinflammatory cytokines linked to cancer. A new series of thalidomide analogs were designed and synthesized in order to develop potential antitumor immunomodulatory agents. The antiproliferative activities of the new candidates against a panel of three human cancer cell lines (HepG-2, PC3 and MCF-7) were assessed in comparison to thalidomide as a positive control. The obtained results showed the relative significant potency of 18f (IC50 = 11.91 ± 0.9, 9.27 ± 0.7, and 18.62 ± 1.5 μM) and 21b (IC50 = 10.48 ± 0.8, 22.56 ± 1.6, and 16.39 ± 1.4 μM) against the mentioned cell lines, respectively. These results were comparable to thalidomide (IC50 = 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 μM, respectively). To see to what extent the biological properties of the new candidates are relative to those of thalidomide, the effects of 18f and 21b on the expression levels of TNF-α, CASP8, VEGF, and NF-κB P65 were evaluated. Significant reductions in the proinflammatory TNF-α, VEGF, and NF-κB P65 levels in HepG-2 cells were observed after exposure to compounds 18f and 21b. Furthermore, a sharp increase in CASP8 levels was detected. The obtained results revealed that 21b is of greater significance than thalidomide in TNF-α and NF-κB P65 inhibition. The in silico ADMET and toxicity studies showed that most of tested candidates have a good profile of drug-likeness and low toxicity potential. Novel thalidomide analogs as anticancer immunomodulatory agents.![]()
Collapse
Affiliation(s)
- Anas Ramadan Kotb
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Dina Abed Bakhotmah
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Tamer M. Abdelghany
- Department of Pharmacology& Toxicology, Faculty of Pharmacy, Al-Azhar UniversityCairoEgypt
- Department of Pharmacology& Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable DevelopmentCairoEgypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| |
Collapse
|
18
|
Raslan RR, Ammar YA, Fouad SA, Hessein SA, Shmiess NAM, Ragab A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′ H-spiro-pyridine derivatives as a new class of EGFR Wt and VEGFR-2 inhibitors with apoptotic inducers †. RSC Adv 2023; 13:10440-10458. [PMID: 37020892 PMCID: PMC10069231 DOI: 10.1039/d3ra00887h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Developing new agents for cancer treatment remains a top priority because it is one of the deadliest worldwide. A new series of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives were designed and synthesized based on an N-(ethyl benzoate) moiety. The structure of the designed derivatives was confirmed by different spectroscopic techniques (FT-IR and NMR) and elemental analysis and then evaluated as antiproliferative against HepG-2 and Caco-2 cell lines compared with Doxorubicin. The spiro-pyridine derivatives 5, 7, and 8 exhibited a remarkably higher activity against Caco-2 cell lines than that of other derivatives. Additionally, these derivatives exhibited activation in the Bax and suppressed Bcl-2 expression with variable degrees. Interestingly, compound 7 showed the lowest cytotoxicity value on Caco-2 cells (IC50 = 7.83 ± 0.50 μM) compared with Doxorubicin (IC50 = 12.49 ± 1.10 μM). Additionally, this compound showed activation of the Bax gene (7.508-fold) and suppressed Bcl-2 (0.194-fold) compared to untreated Caco-2 cells, as revealed by the qRT-PCR technique. Moreover, compound 7 could inhibit EGFR and VEGFR-2 with sub-micromole values of 0.124 μM and 0.221 μM compared with Erlotinib (IC50 = 0.033 μM) and Sorafenib (IC50 = 0.043 μM), respectively. Further, cell cycle and apoptosis analysis demonstrated that compound 7 promoted apoptosis by increasing the apoptosis rate from 1.92 to 42.35% and the S cell accumulation ratio from 31.18 to 42.07% compared to untreated Caco-2 cells. Finally, the most active compound 7 showed good drug-likeness and toxicity profiles. Besides, molecular docking studies were performed to determine the binding mode, which is in agreement with the in vitro results. Design and synthesis a novel of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives as a new apoptotic inducers agents.![]()
Collapse
Affiliation(s)
- Reham R. Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Sadia A. Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Nadia A. M. Shmiess
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| |
Collapse
|
19
|
Yousef RG, Elwan A, Gobaara IMM, Mehany ABM, Eldehna WM, El-Metwally SA, A Alsfouk B, Elkaeed EB, Metwaly AM, Eissa IH. Anti-cancer and immunomodulatory evaluation of new nicotinamide derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: in vitro and in silico studies. J Enzyme Inhib Med Chem 2022; 37:2206-2222. [PMID: 35980113 PMCID: PMC9466619 DOI: 10.1080/14756366.2022.2110868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
New nicotinamide derivatives 6, 7, 10, and 11 were designed and synthesised based on the essential features of the VEGFR-2 inhibitors. Compound 10 revealed the highest anti-proliferative activities with IC50 values of 15.4 and 9.8 µM against HCT-116 and HepG2, respectively compared to sorafenib (IC50 = 9.30 and 7.40 µM). Compound 7 owned promising cytotoxic activities with IC50 values of 15.7 and 15.5 µM against the same cell lines, respectively. Subsequently, the VEGFR-2 inhibitory activities were assessed for the titled compounds to exhibit VEGFR-2 inhibition with sub-micromolar IC50 values. Moreover, compound 7 induced the cell cycle cessation at the cycle at %G2-M and G0-G1phases, and induced apoptosis in the HCT-116. Compounds 7 and 10 reduced the levels of TNF-α by 81.6 and 84.5% as well as IL-6 by 88.4 and 60.9%, respectively, compared to dexamethasone (82.4 and 93.1%). In silico docking, molecular dynamics simulations, ADMET, and toxicity studies were carried out.
Collapse
Affiliation(s)
- Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibraheem M M Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Souad A El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Kotb AR, Bakhotmah DA, Abdallah AE, Elkady H, Taghour MS, Eissa IH, El-Zahabi MA. Design, synthesis, and biological evaluation of novel bioactive thalidomide analogs as anticancer immunomodulatory agents. RSC Adv 2022; 12:33525-33539. [PMID: 36505721 PMCID: PMC9680624 DOI: 10.1039/d2ra06188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is still a dangerous disease with a high mortality rate all over the world. In our attempt to develop potential anticancer candidates, new quinazoline and phthalazine based compounds were designed and synthesized. The new derivatives were built in line with the pharmacophoric features of thalidomide. The new derivatives as well as thalidomide were examined against three cancer cell lines, namely: hepatocellular carcinoma (HepG-2), breast cancer (MCF-7) and prostate cancer (PC3). Then the effects on the expression levels of caspase-8, VEGF, NF-κB P65, and TNF-α in HepG-2 cells were evaluated. The biological data revealed the high importance of phthalazine based compounds (24a-c), which were far better than thalidomide with regard to the antiproliferative activity. 24b showed IC50 of 2.51, 5.80 and 4.11 μg mL-1 compared to 11.26, 14.58, and 16.87 μg mL-1 for thalidomide against the three cell lines respectively. 24b raised caspase-8 level by about 7 folds, compared to 8 folds reported for thalidomide. Also, VEGF level in HepG-2 cells treated with 24b was 185.3 pg mL-1, compared to 432.5 pg mL-1 in control cells. Furthermore, the immunomodulatory properties were proven to 24b, which reduced TNF-α level by approximately half. At the same time, NF-κB P65 level in HepG-2 cells treated with 24b was 76.5 pg mL-1 compared to 278.1 and 110.5 pg mL-1 measured for control cells and thalidomide treated HepG-2 cells respectively. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. This work suggests 24b as a promising lead compound for development of new immunomodulatory anticancer agents.
Collapse
Affiliation(s)
- Anas Ramadan Kotb
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Dina A. Bakhotmah
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Ibrahim. H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar UniversityCairo11884Egypt
| |
Collapse
|
21
|
Elwan A, Abdallah AE, Mahdy HA, Dahab MA, Taghour MS, Elkaeed EB, Mehany ABM, Nabeeh A, Adel M, Alsfouk AA, Elkady H, Eissa IH. Modified Benzoxazole-Based VEGFR-2 Inhibitors and Apoptosis Inducers: Design, Synthesis, and Anti-Proliferative Evaluation. Molecules 2022; 27:5047. [PMID: 35956997 PMCID: PMC9370530 DOI: 10.3390/molecules27155047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023] Open
Abstract
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.
Collapse
Affiliation(s)
- Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed Adel
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
22
|
Azab AE, Alesawy MS, Eldehna WM, Elwan A, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazoline derivatives as vascular endothelial growth factor receptor-2 inhibitors and apoptosis inducers: Design, synthesis, docking, and antiproliferative evaluation. Arch Pharm (Weinheim) 2022; 355:e2200133. [PMID: 35822666 DOI: 10.1002/ardp.202200133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.
Collapse
Affiliation(s)
- Ahmed E Azab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Yousef RG, Eldehna WM, Elwan A, Abdelaziz AS, Mehany ABM, Gobaara IMM, Alsfouk BA, Elkaeed EB, Metwaly AM, Eissa IH. Design, Synthesis, In Silico and In Vitro Studies of New Immunomodulatory Anticancer Nicotinamide Derivatives Targeting VEGFR-2. Molecules 2022; 27:molecules27134079. [PMID: 35807326 PMCID: PMC9268560 DOI: 10.3390/molecules27134079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.
Collapse
Affiliation(s)
- Reda G. Yousef
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Abdelaziz S. Abdelaziz
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Ibraheem M. M. Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
- Correspondence: (A.M.M.); (I.H.E.)
| |
Collapse
|
24
|
Ali IH, Abdel-Mohsen HT, Mounier MM, Abo-elfadl MT, El Kerdawy AM, Ghannam IA. Design, Synthesis and Anticancer Activity of Novel 2-Arylbenzimidazole/2-Thiopyrimidines and 2-Thioquinazolin-4(3H)-ones Conjugates as Targeted RAF and VEGFR-2 Kinases Inhibitors. Bioorg Chem 2022; 126:105883. [DOI: 10.1016/j.bioorg.2022.105883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023]
|
25
|
Feng LS, Gao C, Liu FW, Wang XP, Zhang ZL. Recent updates on the anticancer activity of quinoxaline hybrids (Jan. 2017-Jan. 2022). Curr Top Med Chem 2022; 22:1426-1441. [DOI: 10.2174/1568026622666220428093955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer as one of the leading causes of death among non-communicable diseases has already posed a heavy burden on the world health system. Chemotherapy is one of the most effective approaches for cancer treatment, but multidrug resistance, lack of efficacy, and toxic side effects hamper efficacious cancer chemotherapy, creating an urgent need to develop novel, more effective and less toxic anticancer therapeutics. Quinoxalines as fascinating structures constitute an important class of heterocycles in drug discovery. Quinoxaline hybrids could exert anticancer activity through diverse mechanisms and possess profound in vitro and in vivo efficacy against various cancers including multidrug-resistant forms. Thus, quinoxaline hybrids represent useful templates for the control and eradication of cancer. The purpose of the present review article is to provide an emphasis on the recent developments (Jan. 2017-Jan. 2022) in quinoxaline hybrids with insights into their in vitro and in vivo anticancer potential as well as structure-activity relationships (SARs) to facilitate further rational design of more effective candidates.
Collapse
|