1
|
da Cruz Albino R, Toledo E Silva MV, Ferreira VP, Pierucci APTR, Bizzo HR, Gama PE, da Silva NCB, de Paula Freitas MC, Leitão SG, de Oliveira DR. Qualitative chemical characterization of salva-de-marajó (Lippia origanoides, Verbenaceae) preparations. Fitoterapia 2025; 180:106302. [PMID: 39577776 DOI: 10.1016/j.fitote.2024.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Lippia origanoides Kunth (LO, Verbenaceae), commonly known in Brazil as salva-de-marajó, is an aromatic plant native to the Americas. Quilombola women from Oriximiná (Pará State, Brazil) use decoctions and decoction vapors of LO aerial parts orally or in sitz baths to alleviate symptoms of dysmenorrhea. This study aimed to evaluate LO decoctions and essential oils through a chemo-qualitative approach. Aerial parts of LO were collected from two individuals, and other two commercial samples were acquired from a public market. Aqueous extract of each sample was obtained by decoction and spray drying. The spray-dried decoctions were chemically characterized using UPLC-APCI(-)-IT-MS2 and cluster heatmap analysis to discern compositional patterns. Essential oils were obtained through hydrodistillation and analyzed using GC-MS and GC-FID. In total, 12 compounds were tentatively identified from LO decoctions. Their product ion spectra were characteristic of flavonoid aglycones (5) and glycosides (4), and phenylpropanoids, including two stilbene glycosides and one hydroxycinnamic acid glycoside. Variations were noted in the chemical fingerprints of the decoctions, but the flavonoid glycosides orientin, isoorientin, and vitexin emerged as potential markers for the species. The essential oils of the samples contained high amounts of oxygenated monoterpenoids, with a predominance of the p-menthanes carvacrol (up to 61.9 %) and/or thymol (up to 17.0 %), and p-cymene (up to 24.9 %). This study was the first to explore the chemical composition of decoctions derived from LO, highlighting the species as an untapped source of phenolic glycosides, an aspect that has received limited discussion thus far.
Collapse
Affiliation(s)
- Rayane da Cruz Albino
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil.
| | - Marcos Vinicius Toledo E Silva
- Laboratório de Fitoquímica e Farmacognosia, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Victor Paulo Ferreira
- Laboratory of Food Development for Special Health and Educational Purposes, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Laboratory of Food Development for Special Health and Educational Purposes, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | | | | | | | - Mariana Cunha de Paula Freitas
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Suzana Guimarães Leitão
- Laboratório de Fitoquímica e Farmacognosia, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Cheng Z, Chen J, Zhang Y, Li X, Zhang N, Liu F, Jiao Y. In Vitro Hypoglycemic Activities of Lactobacilli and Bifidobacterium Strains from Healthy Children's Sources and Their Effect on Stimulating GLP-1 Secretion in STC-1 Cells. Foods 2024; 13:519. [PMID: 38397496 PMCID: PMC10887728 DOI: 10.3390/foods13040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A long-term use of chemical drugs cannot cure type II diabetes mellitus (T2DM) and their numerous toxic side effects can be harmful to human health. In recent years, probiotics have emerged as a natural resource to replace chemical drugs in alleviating many human ailments. Healthy children's intestines have a lot of colonized Lactobacilli and Bifidobacterium, and these beneficial bacteria can help promote overall health. The objective of this study was to isolate potential antidiabetic probiotic strains from healthy children and evaluate their application prospects. Firstly, Lactobacillus and Bifidobacterium strains were isolated from healthy children's feces and identified by the pheS or clpC genes with their respective 16S rRNA genes. Then, hydrophobicity, artificial gastrointestinal fluid tolerance, α-Glucosidase and Dipeptidyl peptidase IV (DPP-IV) inhibitory activities of isolated strains were determined, and antioxidant activities and promoting secretion of GLP-1 in STC-1 cells of candidate strains were tested. Results showed that 6 strains of Lactobacillus and Bifidobacterium were obtained from the feces of healthy children aged 3 years, respectively, including Lacticaseibacillus paracasei L-21 and L-25, Levilactobacillus brevis L-16, Lentilactobacillus buchneri L-9, Lactiplantibacillus plantarum L-8 and L-3, Bifidobacterium bifidum 11-1 and B-84, Bifidobacterium longum subsp. longum 6-1, 6-2, B42 and B53. The hydrophobicity and auto-aggregation levels of all these strains were higher than 30% and 50%, respectively, and the decrease in the number of colonies of all strains in the artificial gastrointestinal fluid was less than 2 log CFU/mL. Strains L-3, L-8, L-9, L-21, 6-1, 11-1, B53 and B84 were selected based on their high α-glucosidase inhibitory activity and DPP-IV inhibitory activity, and results of the antioxidant capacity assay showed that the remaining strains all had intense comprehensive antioxidant activity. Additionally, Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 had the most substantial prompting effect on GLP-1 secretion in the STC-1 cell line. These results indicated that Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 could be used as a potential antidiabetic strain; thus, its application as a food supplement and drug ingredient could be recommended after in vivo mitigation of type II diabetes test.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Jingru Chen
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Yulong Zhang
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Xinyi Li
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Ning Zhang
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Fei Liu
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
3
|
Dai YP, Duan Y, Lu YT, Ni XT, Zhang YK, Li J, Li SX. Nourishing Yin traditional Chinese medicine: potential role in the prevention and treatment of type 2 diabetes. Am J Transl Res 2024; 16:234-254. [PMID: 38322552 PMCID: PMC10839388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a common and frequently occurring disease in contemporary society, has become a global health threat. However, current mainstream methods of prevention and treatment, mainly including oral hypoglycemic drugs and insulin injections, do not fundamentally block the progression of T2DM. Therefore, it is imperative to find new ways to prevent and treat diabetes. Traditional Chinese medicine is characterized by multiple components, pathways, and targets with mild and long-lasting effects. Pharmacological studies have shown that nourishing yin traditional Chinese medicine (NYTCM) can play a positive role in the treatment of T2DM by regulating pathways such as the phosphatidylinositol 3-kinase/serine-threonine kinase, mitogen-activated protein kinase, nuclear factor-kappa B, and other pathways to stimulate insulin secretion, protect and repair pancreatic β cells, alleviate insulin resistance, ameliorate disordered glucose and lipid metabolism, mitigate oxidative stress, inhibit inflammatory responses, and regulate the intestinal flora. The pharmacologic activity, mechanisms, safety, and toxicity of NYTCM in the treatment of T2DM are also reviewed in this manuscript.
Collapse
Affiliation(s)
- Yu-Ping Dai
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Yan Duan
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Yu-Ting Lu
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Xiao-Ting Ni
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Yun-Kun Zhang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Juan Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| | - Shun-Xiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese MedicineChangsha 410208, Hunan, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative DiseasesChangsha 410208, Hunan, China
| |
Collapse
|
4
|
Lu F, Sun J, Jiang X, Song J, Yan X, Teng Q, Li D. Identification and Isolation of α-Glucosidase Inhibitors from Siraitia grosvenorii Roots Using Bio-Affinity Ultrafiltration and Comprehensive Chromatography. Int J Mol Sci 2023; 24:10178. [PMID: 37373326 DOI: 10.3390/ijms241210178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of bioactive compounds from medicinal plants has played a crucial role in drug discovery. In this study, a simple and efficient method utilizing affinity-based ultrafiltration (UF) coupled with high-performance liquid chromatography (HPLC) was developed for the rapid screening and targeted separation of α-glucosidase inhibitors from Siraitia grosvenorii roots. First, an active fraction of S. grosvenorii roots (SGR2) was prepared, and 17 potential α-glucosidase inhibitors were identified based on UF-HPLC analysis. Second, guided by UF-HPLC, a combination of MCI gel CHP-20P column chromatography, high-speed counter-current countercurrent chromatography, and preparative HPLC were conducted to isolate the compounds producing active peaks. Sixteen compounds were successfully isolated from SGR2, including two lignans and fourteen cucurbitane-type triterpenoids. The structures of the novel compounds (4, 6, 7, 8, 9, and 11) were elucidated using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. Finally, the α-glucosidase inhibitory activities of the isolated compounds were verified via enzyme inhibition assays and molecular docking analysis, all of which were found to exhibit certain inhibitory activity. Compound 14 exhibited the strongest inhibitory activity, with an IC50 value of 430.13 ± 13.33 μM, which was superior to that of acarbose (1332.50 ± 58.53 μM). The relationships between the structures of the compounds and their inhibitory activities were also investigated. Molecular docking showed that the highly active inhibitors interacted with α-glucosidase through hydrogen bonds and hydrophobic interactions. Our results demonstrate the beneficial effects of S. grosvenorii roots and their constituents on α-glucosidase inhibition.
Collapse
Affiliation(s)
- Fenglai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jiayi Sun
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaohua Jiang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Jingru Song
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Xiaojie Yan
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Qinghu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| |
Collapse
|
5
|
In situ visual and content changes analysis of coumarins in Radix Angelicae dahuricae by LSCM combined with LC-MS technology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|