1
|
Kitson RRA, Kitsonová D, Siegel D, Ross D, Moody CJ. Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry. J Med Chem 2024; 67:17946-17963. [PMID: 39361055 PMCID: PMC11513894 DOI: 10.1021/acs.jmedchem.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives. Thus, a range of C-17-substituted amine derivatives has been investigated in oncology applications, with a number of compounds in this series reaching clinical trials. In contrast, the 19-position of geldanamycin has received less attention, although 19-substituted derivatives offer promise with markedly reduced toxicity compared to geldanamycin itself, while retaining Hsp90 inhibitory activity albeit with diminished potency in cellular studies.
Collapse
Affiliation(s)
- Russell R. A. Kitson
- Department
of Organic and Bioorganic Chemistry, Charles
University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Dominika Kitsonová
- Datwyler
Sealing Technologies CZ Ltd., Polní 224, 50401 Nový Bydžov, Czech
Republic
| | - David Siegel
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - David Ross
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Christopher J. Moody
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Skrzypczak N, Pyta K, Bohusz W, Leśniewska A, Gdaniec M, Ruszkowski P, Schilf W, Bartl F, Przybylski P. Cascade Transformation of the Ansamycin Benzoquinone Core into Benzoxazole Influencing Anticancer Activity and Selectivity. J Org Chem 2023; 88:9469-9474. [PMID: 37276434 PMCID: PMC10337034 DOI: 10.1021/acs.joc.3c00493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/07/2023]
Abstract
The metal-free cascade transformation of geldanamycin benzoquinone core is proposed at relatively mild conditions. This approach yields new benzoxazole ansamycin antibiotics and enables their functionalization in an atom-economic manner, irrespective of the type of amine used. The analysis of the heterocyclization course reveals the dependence of its rate on the nature of the para-substituent within the benzylamine moiety (EDG/EWG) and the strength of the base. The reduction of the ansamycin core enables an increase in anticancer potency and selectivity.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Krystian Pyta
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Lebenswissenschaftliche
Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Wiktor Bohusz
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Aleksandra Leśniewska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Maria Gdaniec
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Ruszkowski
- Department
of Pharmacology, Poznań University
of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland
| | - Wojciech Schilf
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franz Bartl
- Lebenswissenschaftliche
Fakultät, Institut für Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Piotr Przybylski
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Skrzypczak N, Buczkowski A, Bohusz W, Nowak E, Tokarska K, Leśniewska A, Alzebari AM, Ruszkowski P, Gdaniec M, Bartl F, Przybylski P. Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity. Eur J Med Chem 2023; 256:115450. [PMID: 37210951 DOI: 10.1016/j.ejmech.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Functionalization of alkyne (1) and azide (2) derivatives of geldanamycin (GDM) via dipolar cycloaddition CuAAC yielded 35 new congeners (3-37) with C(17)-triazole arms bearing caps of different nature (basic vs. acidic, hydrophilic vs. hydrophobic). Confrontation of biological data (anticancer activity vs. toxicity in normal cells) with lipophilicity (clogP), dissociation constants (Kd) of complexes with Hsp90 and binding modes to Hsp90 revealed SAR in specific subgroups of GDM derivatives. The most potent GDM congeners 14-16, bearing C(17)-triazole-benzyl-halogen arms exhibited the most optimal clogP values of 2.7-3.1 at favourable binding to Hsp90 (KdHsp90 at μM level). The anticancer activity of 14-16 (IC50 = 0.23-0.41 μM) is higher than those of GDM (IC50 = 0.58-0.64 μM) and actinomycin D (ActD, IC50 = 0.62-0.71 μM) in SKBR-3, SKOV-3 and PC-3 cell lines, with a comparable cytotoxicity in healthy cells. The relationship between structure and attractive anticancer potency (IC50 = 0.53-0.74 μM) is also observed for congeners with C(17)-triazole-saccharide or C(17)-triazole-unsaturated arms. In the former, the absolute configuration at C(4) (ᴅ-glucose vs. ᴅ-galactose) whereas in the latter the length of the unsaturated arm influences the cytotoxic effects due to different binding strength (Kd, ΔE) and modes with Hsp90. Among all triazole congeners of GDM that are biologically attractive and exhibit lower toxicity in normal cells than GDM and ActD, the derivative 22, bearing the C(17)-triazole-cinnamyl arm, shows the lowest Kd (Hsp90), optimal clogP = 2.82, the best pro-apoptotic properties in SKBR-3 and SKOV-3 and the best selectivity indices (SI). For the most potent GDM derivatives with C(17)-triazole arm, the docking studies have suggested the importance of the intermolecular stabilization between the arm and the D57 or Y61 of Hsp90.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - Wiktor Bohusz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ewelina Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Klaudia Tokarska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Attaa Mohammed Alzebari
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806, Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultӓt, Institut fȕr Biologie, Biophysikalische Chemie Humboldt-Universitӓt zu Berlin, Invalidenstraße 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
4
|
Eugui M, Lucero V, do Carmo H, Cabrera M, Moyna G. Synthesis and antitumoral evaluation of natural product-like compounds based on tropolone and benzotropolone derivatives. Arch Pharm (Weinheim) 2023; 356:e2200305. [PMID: 36481876 DOI: 10.1002/ardp.202200305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
We present the preparation of a series of novel natural product-like homobarrelenones, norcaranes, and dihydrofluorenones through a diversity-oriented synthetic (DOS) strategy that combines Diels-Alder reactions and phototransformations, as well as their biological evaluation against MCF-7, HT-29, and NCI-H460 human tumor cells. Six of these demonstrated activities in the micromolar range against the three cell lines, and none were predicted as cytotoxic against human nontumor cells according to in silico studies. In addition, within the set of active derivatives, three exhibited low unspecific cytotoxicity in a sperm motility assay. The rich functionality of the new compounds makes them ideal candidates for exhaustive structure-activity relationship studies.
Collapse
Affiliation(s)
- Macarena Eugui
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Valeria Lucero
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Hugo do Carmo
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Mauricio Cabrera
- Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Guillermo Moyna
- Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
5
|
Wang Z, Meng L, Liu X, Zhang L, Yu Z, Wu G. Recent progress toward developing axial chirality bioactive compounds. Eur J Med Chem 2022; 243:114700. [DOI: 10.1016/j.ejmech.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
|
6
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|