1
|
Lu G, Zou Z, Xin M, Meng Y, Cheng Z, Du Z, Gu J, Zhang X, Zou Y. Carbamoylation at C-8 position of natural 3-arylcoumarin scaffold for the discovery of novel PARP-1 inhibitors with potent anticancer activity. Eur J Med Chem 2024; 277:116726. [PMID: 39116535 DOI: 10.1016/j.ejmech.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 μM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.
Collapse
Affiliation(s)
- Guoqing Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhiru Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixiu Xin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingfen Meng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhuo Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhibo Du
- Zhongshan Wanhan Pharmaceuticals Co., Ltd., Zhongshan, 528451, PR China
| | - Jiayi Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuejing Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yong Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Kumar C, Chibber P, Painuli R, Haq SA, Vishwakarma RA, Singh G, Satti NK, Phatake RS. Scoparone chemical modification into semi-synthetic analogues featuring 3-substitution for their anti-inflammatory activity. Mol Divers 2024; 28:2467-2478. [PMID: 37468705 DOI: 10.1007/s11030-023-10687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Natural products (NPs) continue to serve as a structural model for the development of new bioactive molecules and improve the process of identifying novel medicines. The biological effects of coumarins, one of the most researched compounds among NPs, are currently being thoroughly investigated. In the present investigation, we reported the synthesis of nineteen semi-synthetic 3-substituted scoparone analogues, followed by their characterization using analytical methods such as NMR, HPLC, and HRMS. All compounds screened for in vitro and in vivo study for their ability to reduce inflammation. The SAR study worked effectively for this particular scoparone 3-substitution, as compounds 3, 4, 9, 16, 18, and 20 displayed improved in vitro results for TNF-α than the parent molecule. Similarly, compounds 3, and 17 showed a higher percentage of IL-6 inhibition. Compounds 3, 4, and 12 have also been identified by in vivo studies as promising candidates with higher percent inhibition than the parent scoparone molecule. As evident from all in vitro and in vivo studies, compound 3 showed the most potent anti-inflammatory activity among all.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Pankaj Chibber
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritu Painuli
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram A Vishwakarma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurdarshan Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Naresh K Satti
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravindra S Phatake
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Berrino E, Carradori S, Carta F, Melfi F, Gallorini M, Poli G, Tuccinardi T, Fernández-Bolaños JG, López Ó, Petzer JP, Petzer A, Guglielmi P, Secci D, Supuran CT. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants (Basel) 2023; 12:2044. [PMID: 38136164 PMCID: PMC10740956 DOI: 10.3390/antiox12122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Francesco Melfi
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| |
Collapse
|
5
|
Chemical Composition and Antibacterial and Antioxidant Activities of Stem Bark Essential Oil and Extracts of Solanecio gigas. Biochem Res Int 2022; 2022:4900917. [PMID: 35855890 PMCID: PMC9288319 DOI: 10.1155/2022/4900917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medication developed from natural resources has to have antibacterial and antioxidant effects. The aim of this research is to look at the chemical makeup of Solanecio gigas (S. gigas) stem bark essential oil (EO), as well as the effectiveness of EO and extracts (chloroform, ethyl acetate, and methanol) against human pathogenic bacteria and their antioxidant activity. The GC-MS analysis identified 23 components, accounting for 98.7% of the total oil containing Methylene chloride (49.2%), sabinene (10.5%), 1-nonene (11.3%), Terpinen-4-ol (6.9%), Camphene (4.3%), γ-terpinene (3.6%), α-phellandrene (2.9%) β-myrcene (2.6%), 1,2,5-Oxadiazol-3-carboxamide, 4,4′-azobis-2,2′-dioxide (2.4%), α-terpinene (1.9%), 1-Octanamine, N-methyl- (1.9%), ρ-cymene (1.6%) as major components. The antibacterial efficacy of the EO and extracts (25, 50, 100, and 200 mg/ml) was demonstrated by the inhibitory zones (8.5 ± 0.47–23.3 ± 0.36 and 7.2 ± 0.25–22.0 ± 0.45 mm), respectively. The MIC values of the extracts and the EO were 120–150 and 240 to <1100 μg/ml, respectively. The EO also demonstrated a significant antibacterial impact. The EO and methanolic extract had free radical scavenging activities with IC50 value, 13.8 ± 0.48 and 4.2 ± 0.04 μg/ml, respectively. In comparison to the other extracts, the methanolic extract had the greatest phenolics (100.2 ± 0.13 μg GAE/mg of dry extract) and flavonoid contents (112.1 ± 0.18 μg CE/mg of dry extract).
Collapse
|