1
|
Driche EH, Badji B, Mathieu F, Zitouni A. In-vitro antibacterial and antibiofilm activities and in-silico analysis of a potent cyclic peptide from a novel Streptomyces sp. strain RG-5 against antibiotic-resistant and biofilm-forming pathogenic bacteria. Arch Microbiol 2024; 206:450. [PMID: 39476249 DOI: 10.1007/s00203-024-04174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/10/2024]
Abstract
The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as Streptomyces pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by 1H and 13C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at - 6.0 kcal/mol compared to reference inhibitor (- 5.4 kcal/mol), medium with penicillin-binding protein 1a (- 6.1 kcal/mol), and LasR regulator protein of quorum sensing (- 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from Streptomyces, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.
Collapse
Affiliation(s)
- El-Hadj Driche
- Laboratory of Molecular Biology, Genomics and Bioinformatics (LBMGB), Department of Biology, Faculty of Nature and Life Sciences (SNV), Hassiba Benbouali University of Chlef, Ouled Fares, Chlef, 02180, Algeria.
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria.
| | - Boubekeur Badji
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria
| | - Florence Mathieu
- Chemical Engineering Laboratory, LGC, UMR 5503 (CNRS/INPT/UPS), University of Toulouse, Toulouse, France
| | - Abdelghani Zitouni
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria
| |
Collapse
|
2
|
Abdula AM, Mohsen GL, Jasim BH, Jabir MS, Rushdi AI, Baqi Y. Synthesis, pharmacological evaluation, and in silico study of new 3-furan-1-thiophene-based chalcones as antibacterial and anticancer agents. Heliyon 2024; 10:e32257. [PMID: 38947436 PMCID: PMC11214363 DOI: 10.1016/j.heliyon.2024.e32257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
New 3-furan-1-thiophene-based chalcones were synthesized, characterized and pharmacologically evaluated as antibacterial and anticancer agents against two bacterial species; Gram-positive (Streptococcus pyogenes) and Gram-negative (Pseudomonas aeruginosa). All tested final compounds were active against the two bacterial species; S. pyogenes and P . aeruginosa. Especially compound AM4 showed large inhibition zone (27.13 and 23.30 mm), respectively. Using the DPPH assay, the new chalcones were evaluated for their free radical scavenging activity and found to reach up to 90 %, accomplished at a test concentration of 200 μg/mL. Furthermore, the chalcone derivatives were investigated against two breast cell lines; MCF-7 (cancerous) and MCF-10A (non-cancerous). Compound AM4 showed potent anticancer activity (IC50 = 19.354 μg/mL) in comparison to the other tested chalcone derivatives. In silico study was achieved using the PyRx AutoDock Vina software (0.8) to study the interaction types between the new hits and the binding sites of targeted proteins; glucosamine-6-phosphate synthase and tubulin, the target for antibacterial and anticancer drugs, respectively. Based on the molecular docking results the tested chalcones bind to the active pocket of the respective proteins, which support the in vitro results. In conclusion, 3-furan-1-thiophene-based chalcones could serve as new hits in the discovery of novel anticancer and/or antibacterial drugs.
Collapse
Affiliation(s)
- Ahmed Mutanabbi Abdula
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Ghosoun Lafta Mohsen
- Department of Chemistry, College of Science, Nahrain University, Baghdad, P.O. Box 64074, Iraq
| | - Bilal H. Jasim
- Department of Applied Sciences, University of Technology, Baghdad, P.O. Box 19006, Iraq
| | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, P.O. Box 19006, Iraq
| | - Abduljabbar I.R. Rushdi
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Younis Baqi
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, Oman
| |
Collapse
|
3
|
Mahout M, Carlson RP, Simon L, Peres S. Logic programming-based Minimal Cut Sets reveal consortium-level therapeutic targets for chronic wound infections. NPJ Syst Biol Appl 2024; 10:34. [PMID: 38565568 PMCID: PMC10987626 DOI: 10.1038/s41540-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network, disable certain cellular functions. The traditional search for MCSs within genome-scale metabolic models (GSMMs) targets cellular growth, identifies reaction sets resulting in a lethal phenotype if disrupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets. Using the dual link between MCSs and Elementary Flux Modes (EFMs), our logic programming-based tool aspefm was able to compute MCSs of any size from GSMMs in acceptable run times. The tool demonstrated better performance when computing large-sized MCSs than the mixed-integer linear programming methods. We applied the new MCSs methodology to a medically-relevant consortium model of two cross-feeding bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. aspefm constraints were used to bias the computation of MCSs toward exchanged metabolites that could complement lethal phenotypes in individual species. We found that interspecies metabolite exchanges could play an essential role in rescuing single-species growth, for instance inosine could complement lethal reaction knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both bacteria. Finally, MCSs were used to derive a list of promising enzyme targets for consortium-level therapeutic applications that cannot be circumvented via interspecies metabolite exchange.
Collapse
Affiliation(s)
- Maxime Mahout
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405, Orsay, France
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Laurent Simon
- Bordeaux-INP, Université Bordeaux, LaBRI, 33405, Talence Cedex, France
| | - Sabine Peres
- UMR CNRS 5558, Laboratoire de Biométrie et de Biologie Évolutive, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France.
- INRIA Lyon Centre, 69100, Villeurbanne, France.
| |
Collapse
|
4
|
Singh BP, Paul S, Goel G. Shotgun proteomics and molecular simulations on multifunctional bioactive peptides derived from the whey of unexplored "Gaddi" goat of Himalayas. Food Chem 2024; 430:137075. [PMID: 37549618 DOI: 10.1016/j.foodchem.2023.137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The very first time, whey protein from the Himalayan goat breed "Gaddi" was hydrolyzed with alcalase, flavourzyme, and a combination of both in this study. The degree of hydrolysis (DH) ranged from 28 to 53%, with sequential hydrolysis by combination achieving the highest DH. The sequential hydrolysis demonstrated antimicrobial activity against all pathogens used with 3 kDa permeate showed significantly higher (p < 0.05) activity against S. aureus, E. coli, B. cereus and C. sakazakii. The antioxidant activity was in the range of IC50 = 0.49 to 2.00 mg protein/mL, flavourzyme and sequential hydrolysates showed significant ABTS radical and FRAP inhibition. The α-amylase inhibitory activity was highest in 3 kDa permeate of flavourzyme with IC50 values of 0.34 mg protein/mL. Bioactive peptides DDSPDLPK, EMPFPK and TPEVDKEALEK were identified most significant in the hydrolysates. In molecular docking, the DDSPDLPK interacted most efficiently with enzymes involved in microbial growth, oxidative stress, and hyperglycemia.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India.
| | - Souparno Paul
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Gunjan Goel
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
5
|
Mahdi IS, Abdula AM, Jassim AMN, Baqi Y. Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆ 2-pyrazoline Derivatives. Antibiotics (Basel) 2023; 13:21. [PMID: 38247580 PMCID: PMC10812776 DOI: 10.3390/antibiotics13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The present work focuses on the synthesis and preliminary structure activity relationships (SARs) of furan-derived chalcones and their corresponding ∆2-pyrazoline derivatives as antimicrobial agents. Eight novel chalcone derivatives and eight ∆2-pyrazoline compounds were synthesized in moderate to good isolated yields. The target compounds were evaluated as antimicrobial agents against two Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis), two Gram-negative (Escherichia coli and Klebsiella pneumoniae), and fungi (Candida albicans) species. Based on the SARs, chalcones 2a and 2h showed inhibition activity on all tested microbial species, while ∆2-pyrazoline 3d was found to be selective for some microbial species. The most potent compounds (2a, 2h, and 3d) were docked into glucosamine-6-phosphate synthase (GlcN-6-P), the molecular target enzyme for antimicrobial agents, utilizing the Autodock 4.2 program, in order to study their virtual affinity and binding mode with the target enzyme. The selected potent compounds were found to bind to the active site of the enzyme probably in a similar way to that of the substrate as suggested by the docking study. In summary, the newly developed furan-derived chalcones and their ∆2-pyrazoline derivatives could serve as potent leads toward the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Inas S. Mahdi
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad P.O. Box 14022, Iraq; (I.S.M.); (A.M.N.J.)
| | - Ahmed Mutanabbi Abdula
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad P.O. Box 14022, Iraq; (I.S.M.); (A.M.N.J.)
| | - Abdulkadir M. Noori Jassim
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad P.O. Box 14022, Iraq; (I.S.M.); (A.M.N.J.)
| | - Younis Baqi
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat P.O. Box 36, Oman
| |
Collapse
|
6
|
Wu B, Xu Y, Tang M, Jiang Y, Zhang T, Huang L, Wang S, Hu Y, Zhou K, Zhang X, Chen M. A Metabolome and Microbiome Analysis of Acute Myeloid Leukemia: Insights into the Carnosine-Histidine Metabolic Pathway. TOXICS 2023; 12:14. [PMID: 38250970 PMCID: PMC10821349 DOI: 10.3390/toxics12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Metabolism underlies the pathogenesis of acute myeloid leukemia (AML) and can be influenced by gut microbiota. However, the specific metabolic changes in different tissues and the role of gut microbiota in AML remain unclear. In this study, we analyzed the metabolome differences in blood samples from patients with AML and healthy controls using UPLC-Q-Exactive. Additionally, we examined the serum, liver, and fecal metabolome of AML model mice and control mice using UPLC-Q-Exactive. The gut microbiota of the mice were analyzed using 16S rRNA sequencing. Our UPLC-MS analysis revealed significant differences in metabolites between the AML and control groups in multiple tissue samples. Through cross-species validation in humans and animals, as well as reverse validation of Celastrol, we discovered that the Carnosine-Histidine metabolic pathway may play a potential role in the occurrence and progression of AML. Furthermore, our analysis of gut microbiota showed no significant diversity changes, but we observed a significant negative correlation between the key metabolite Carnosine and Peptococcaceae and Campylobacteraceae. In conclusion, the Carnosine-Histidine metabolic pathway influences the occurrence and progression of AML, while the gut microbiota might play a role in this process.
Collapse
Affiliation(s)
- Binxiong Wu
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yuntian Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Miaomiao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Zhang
- Women’s Hospital of Jiangnan University, Wuxi 214002, China;
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuyang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhui Hu
- Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.X.); (M.T.); (Y.J.); (L.H.); (S.W.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|