1
|
Sharma V, Vats L, Giovannuzzi S, Mohan B, Supuran CT, Sharma PK. In-vitro and in-silico investigations of SLC-0111 hydrazinyl analogs as human carbonic anhydrase I, II, IX, and XII inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400157. [PMID: 38713910 DOI: 10.1002/ardp.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendragarh, India
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
2
|
Siwach K, Rani M, Vats L, Giovannuzzi S, Paul AK, Brahma M, Kumari N, Maruthi M, Raghav N, Supuran CT, Sharma PK. 1,2,3-Triazole-based esters and carboxylic acids as nonclassical carbonic anhydrase inhibitors capable of cathepsin B inhibition. Arch Pharm (Weinheim) 2024; 357:e2300372. [PMID: 38012535 DOI: 10.1002/ardp.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Herein, we report the design and synthesis of a library of 28 new 1,2,3-triazole derivatives bearing carboxylic acid and ester moieties as dual inhibitors of carbonic anhydrase (CA) and cathepsin B enzymes. The synthesised compounds were assayed in vitro for their inhibition potential against four human CA (hCA) isoforms, I, II, IX and XII. The carboxylic acid derivatives displayed low micromolar inhibition against hCA II, IX and XII in contrast to the ester derivatives. Most of the target compounds showed poor inhibition against the hCA I isoform. 4-Fluorophenyl appended carboxylic acid derivative 6c was found to be the most potent inhibitor of hCA IX and hCA XII with a KI value of 0.7 μM for both the isoforms. The newly synthesised compounds showed dual inhibition towards CA as well as cathepsin B. The ester derivatives exhibited higher % inhibition at 10-7 M concentration as compared with the corresponding carboxylic acid derivatives against cathepsin B. The results from in silico studies of the target compounds with the active site of cathepsin B were found in good correlation with the in vitro results. Moreover, two compounds, 5i and 6c, showed cytotoxic activity against A549 lung cancer cells, with IC50 values lower than 100 μM.
Collapse
Affiliation(s)
- Kiran Siwach
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manishita Rani
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Mettle Brahma
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Neetu Kumari
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Mulaka Maruthi
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
3
|
Elsawi AE, Shahin MI, Elbendary HA, Al-Warhi T, Hassan FE, Eldehna WM. 1,2,4-Triazole-Tethered Indolinones as New Cancer-Fighting Small Molecules Targeting VEGFR-2: Synthesis, Biological Evaluations and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:81. [PMID: 38256914 PMCID: PMC10820444 DOI: 10.3390/ph17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the VEGFR-2 signaling pathway is an inveterate approach toward combating pancreatic and hepatocellular cancers. Based on Sunitinib, the FDA-approved VEGFR-2 inhibitor, novel indolin-2-one-triazole hybrids were designed and synthesized as anti-hepatocellular and anti-pancreatic cancer agents with VEGFR-2 inhibitory activity. All the targeted compounds were assessed for their anti-cancer activity, revealing IC50 values extending from 0.17 to 4.29 µM for PANC1 and 0.58 to 4.49 µM for HepG2 cell lines. An extensive SAR study was conducted to explore the effect of different substituents along with N-alkylation. The potent anti-cancer analogs 11d, 11e, 11g, 11k and 14c were evaluated for their VEGFR-2 inhibitory actions, where their IC50 values ranged from 16.3 to 119.6 nM compared to Sorafenib, which revealed an IC50 of 29.7 nM, having compound 11d as the most active analog. An in silico ADME study was performed to confirm the drug-likeness of the synthesized compounds. Finally, molecular docking simulation was conducted for the most potent VEGFR-2 inhibitor (11d), demonstrating the strong binding with the vital amino acid residues of the VEGFR-2 ATP binding site.
Collapse
Affiliation(s)
- Ahmed E. Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mai I. Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt;
| | - Hager A. Elbendary
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
4
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Elsayed ZM, Almahli H, Nocentini A, Ammara A, Supuran CT, Eldehna WM, Abou-Seri SM. Development of novel anilinoquinazoline-based carboxylic acids as non-classical carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2023; 38:2191163. [PMID: 36942698 PMCID: PMC10035947 DOI: 10.1080/14756366.2023.2191163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
As part of our ongoing endeavour to identify novel inhibitors of cancer-associated CA isoforms IX and XII as possible anticancer candidates, here we describe the design and synthesis of small library of 2-aryl-quinazolin-4-yl aminobenzoic acid derivatives (6a-c, 7a-c, and 8a-c) as new non-classical CA inhibitors. On account of its significance in the anticancer drug discovery and in the development of effective CAIs, the 4-anilinoquinazoline privileged scaffold was exploited in this study. Thereafter, the free carboxylic acid functionality was appended in the ortho (6a-c), meta (7a-c), or para-positon (8a-c) of the anilino motif to furnish the target inhibitors. All compounds were assessed for their inhibitory activities against the hCA I, II (cytosolic), IX, and XII (trans-membrane, tumour-associated) isoforms. Moreover, six quinazolines (6a-c, 7b, and 8a-b) were chosen by the NCI-USA for in vitro anti-proliferative activity evaluation against 59 human cancer cell lines representing nine tumour subpanels.
Collapse
Affiliation(s)
- Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Abd El-Karim SS, Anwar MM, Ahmed NS, Syam YM, Elseginy SA, Aly HF, Younis EA, Khalil WKB, Ahmed KA, Mohammed FF, Rizk M. Discovery of novel benzofuran-based derivatives as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease: Design, synthesis, biological evaluation, molecular docking and 3D-QSAR investigation. Eur J Med Chem 2023; 260:115766. [PMID: 37678141 DOI: 10.1016/j.ejmech.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
A series of novel benzofuran-based compounds 7a-s were designed, synthesized, and investigated in vitro as acetylcholinesterase inhibitors (AChEIs). Compounds 7c and 7e displayed promising inhibitory activity with IC50 values of 0.058 and 0.086 μM in comparison to donepezil with an IC50 value of 0.049 μM. The new molecules' antioxidant evaluation revealed that 7c, 7e, 7j, 7n, and 7q produced the strongest DPPH scavenging activity when compared to vitamin C. As it was the most promising AChEI, compound 7c was selected for further biological evaluation. Acute and chronic toxicity studies exhibited that 7c showed no signs of toxicity or adverse events, no significant differences in the blood profile, and an insignificant difference in hepatic enzymes, glucose, urea, creatinine, and albumin levels in the experimental rat group. Furthermore, 7c did not produce histopathological damage to normal liver, kidney, heart, and brain tissues, ameliorated tissue malonaldehyde (MDA) and glutathione (GSH) levels and reduced the expression levels of the APP and Tau genes in AD rats. Molecular docking results of compounds 7c and 7e showed good binding modes in the active site of the acetylcholinesterase enzyme, which are similar to the native ligand donepezil. 3D-QSAR analysis revealed the importance of the alkyl group in positions 2 and 3 of the phenyl moiety for the activity. Overall, these findings suggested that compound 7c could be deemed a promising candidate for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt.
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre, P. O. Box 12622, El-Bohouth St, Dokki, Cairo, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, P.O. Box 12262 El-Bohouth St, Dokki, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Maha Rizk
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| |
Collapse
|
7
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|
8
|
Bouone YO, Bouzina A, Aouf NE, Ibrahim-Ouali M. New efficient synthesis, spectroscopic characterization, and X-ray analysis of novel β-enaminocarboxamide derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|