1
|
Fadaly WAA, Mohamed FEA, Nemr MTM, Sayed AM, Khalil RG, Zidan TH. Novel benzenesulfonamide derivatives as potential selective carbonic anhydrase IX, XII inhibitors with anti-proliferative activity: Design, synthesis and in silico studies. Bioorg Chem 2024; 153:107881. [PMID: 39396453 DOI: 10.1016/j.bioorg.2024.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
As inhibitors of carbonic anhydrases (CAs) IX and XII, a novel series of 1,2,3-triazole benzenesulfonamide derivatives 17a-l containing pyrazolyl-thiazole moiety was designed, synthesized, and tested for anti-proliferative activity. Compounds 17e-h demonstrated more effective inhibitory activity than acetazolamide (IC50 63 nM CA IX and IC50 92 nM CA XII), with IC50 range of 25-52 nM against CA IX and IC50 range of 31-80 nM against CA XII. To verify selectivity against CA IX and CA XII, carbonic anhydrase inhibitory activity of compounds 17e-h against the physiological CA I and CA II isoforms was carried out. The results showed that compounds 17e-h induced lower inhibitory activity against CA I and CA II with IC50 range of 0.428-0.638 μM (CA I) and 0.095-0.164 μM (CA II), in addition to higher selectivity indices (CA I/CA IX S.I. 8.9-19.92, CA I/CA XII S.I. 5.78-16.06) and (CA II/CA IX S.I. 2.83-4.35, CA II/CA XII S.I. 2.05-3.15) when compared to that of acetazolamide, IC50 of 0.199 μM (CA I), 0.133 μM (CA II) (CA I/CA IX S.I. 3.15, CA I/CA XII S.I. 2.16) and (CA II/CA IX S.I. 2.11, CA II/CA XII S.I. 1.44). Concerning anti-proliferative activity of compounds 17e-h, investigations were done on HEPG-2 cell line with IC50 ranges of 3.44-15.03 μM in comparison, 5-FU and doxorubicin showed IC50 values of 11.80 and 9.53 μM, respectively. Furthermore IC50 of MCF-7 and MDA-MB-231 were determined under both normoxic and hypoxic conditions with IC50 values ranging from 3.18-8.26 μM MCF-7 (normoxic), 1.39-6.05 μM MCF-7 (hypoxic), 7.13-26.3 μM MDA-MB-231 (normoxic), 0.76-16.3 μM MDA-MB-231 (hypoxic) using acetazolamide and SLC-0111 as selective CA inhibition references. Moreover, compounds 17e-h demonstrated greater safety against the normal cell line, MCF-10A, with IC50 of 23.06-99.50 μM in comparison to 5-FU and doxorubicin IC50 of 59.8 and 71.8 μM respectively. They also demonstrated (MCF-7 S.I. range of 3.77-31.28) in contrast to doxorubicin (S.I. 13.72) and (HepG-2 S.I. range of 3.60-6.95) in comparison to doxorubicin (S.I. 7.53). In relation to CA IX, XII inhibition, molecular docking of and ADME studies of sulfonamide derivatives 17a-l with CA IX (PDB: 5FL6) and CA XII (PDB: 1JD0) was carried out. Additionally, molecular dynamic simulation was carried out for compounds 17e and 17g which maintained good stability inside the active sites of both enzymes, with average RMSDs of 2.3 Å and 2.1 Å, respectively.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Ketha S, Sudhakar C, Kethireddy S, Eppakayala L. New Chalcone Incorporated Structurally Modified Pyridine-Pyrimidine Derivatives as Anticancer Agents: Their Design, Synthesis, and in-vitro Evaluation. Chem Biodivers 2024; 21:e202401122. [PMID: 39176466 DOI: 10.1002/cbdv.202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Chalcone-incorporated pyridine-pyrimidines i.e. derivatives of (5-(6-(pyrimidin-5-yl)pyridin-3-yl)thiophen-2-yl)prop-2-en-1-one were synthesized and their structures were confirmed by analytical techniques. In addition, all the derivatives were examined for their capacity to fight against cancer towards four cell lines, including breast (MCF-7), prostate (DU-145 and PC3), and lung (A549) by utilizing the MTT technique and the clinically used chemotherapy medication, etoposide serving as a positive reference. All these results were expressed in IC50 μM, and values of synthesized compounds are compared with a reference drug, showing values ranging from 1.97±0.45 μM to 3.08±0.135 μM. Among those, a few compounds 10(a-e) demonstrated strong activities with corresponding cell lines.
Collapse
Affiliation(s)
- Swarupa Ketha
- Department of Chemistry, GITAM Deemed to be University, Patancheru, Hyderabad 502329, Telangana, India
- Geethanjali College of Engineering and Technology, Keesara, Rangareddy 501301, Telangana, India
| | - Chithaluri Sudhakar
- Department of Chemistry, GITAM Deemed to be University, Patancheru, Hyderabad 502329, Telangana, India
| | - Shashikala Kethireddy
- Geethanjali College of Engineering and Technology, Keesara, Rangareddy 501301, Telangana, India
| | - Laxminarayana Eppakayala
- Department of Chemistry Sreenidhi Institute of Science and Technology (Autonomous) Yamnampet, Ghatkesar, Hyderabad 501301, Telangana, India
| |
Collapse
|
3
|
Nemr MTM, Abdelaziz MA, Teleb M, Elmasry AE, Elshaier YAAM. An overview on pharmaceutical applications of phosphodiesterase enzyme 5 (PDE5) inhibitors. Mol Divers 2024:10.1007/s11030-024-11016-2. [PMID: 39592536 DOI: 10.1007/s11030-024-11016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024]
Abstract
Phosphodiesterase enzyme 5 (PDE5) inhibitors have emerged as one of the leading molecules for the treatment of erectile dysfunction (ED). PDE5 inhibitors are categorized structurally into several classes. PDE5 inhibitors have been a multidisciplinary endeavor that attracts the attention of researchers because of their multiple pharmaceutical applications. Beyond their action on ED, PDE5 inhibitors are widely used in treatment of benign prostatic hypertrophy (BPH), Eisenmenger's syndrome, Raynaud's Disease, Intrauterine growth retardation (IUGR), Mountain sickness, Bladder pain syndrome/interstitial cystitis (BPS/IC), pulmonary arterial hypertension and type II diabetes (insulin resistance). In addition, PDE5 inhibitors also show promising antiproliferative activity, anti-Alzheimer and COX-1/COX-2 inhibitory activity (anti-inflammatory). Pharmacokinetics, Pharmacogenetics and toxicity of PDE5 inhibitors were finally explored. The diverse therapeutic applications, the high feasibility of structural modification and the appropriate pharmacokinetic properties of PDE5 inhibitors have motivated researchers to develop new scaffolds that have been either under clinical trials or approved by FDA and utilize them to overcome some recent global concerns, such as COVID-19.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt.
| | | | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Alamein City, 5060310, Egypt
| | - Ahmed E Elmasry
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Yaseen A A M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| |
Collapse
|
4
|
Xie T, Hu W, You L, Wang X. Design, synthesis and biological evaluation of thienopyridine derivatives as c-Met kinase inhibitors. Mol Divers 2024:10.1007/s11030-024-10998-3. [PMID: 39356364 DOI: 10.1007/s11030-024-10998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024]
Abstract
With cabozantinib as the precursor, a novel small molecule inhibitors of c-Met kinase with thieno [2,3-b] pyridine as the scaffold were designed, synthesized and evaluated for their biological activity against A549, Hela and MCF-7 cell lines. The in vitro activities of 16 compounds were tested by MTT method with cabozantinib as control drug. Most compounds had moderate to strong inhibitory activities on cells. Among them, compound 10 had the strongest inhibitory activity, which was superior to the lead compound cabozantinib. Its IC50 values for A549, Hela and MCF-7 cells were 0.005, 2.833 and 13.581 μM, respectively. The colony formation assay demonstrated that compound 10 significantly inhibited the colony formation of A549 cells and suppressed their growth in a concentration-dependent manner. The wound healing assay showed that compound 10 could effectively inhibit the migration of cancer cells compared to a blank control group. The AO/EB assay demonstrated that compound 10 possesses the capability to effectively trigger apoptosis in a concentration-dependent manner. The elementary structure-activity relationship, molecular docking and pharmacokinetics studies revealed the significance of thieno [2,3-b] pyridine derivatives in anti-tumor activity.
Collapse
Affiliation(s)
- Tianyu Xie
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Wenbo Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Lin You
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang, 110036, China.
| |
Collapse
|
5
|
Wu Z, Zhang F, Chen Z, Wang X, Liu X, Yang G, Wang S, Huang S, Luo HB, Huang YY, Wu D. Discovery and optimization of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel phosphodiesterase 4 inhibitors. Mol Divers 2024:10.1007/s11030-024-10991-w. [PMID: 39313709 DOI: 10.1007/s11030-024-10991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Phosphodiesterases (PDEs) are important intracellular enzymes that hydrolyze the second messengers cAMP and/or cGMP. Now several studies have shown that PDE4 received particular attention due to which it represents the most prominent cAMP-metabolizing enzyme involved in many diseases. In this study, we performed prescreening of our internal compound library and discovered the compound (PTC-209) with moderate PDE4 inhibitory activity (IC50 of 4.78 ± 0.08 μM). And a series of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel PDE4 inhibitors starting from PTC-209 were successfully designed and synthesized using a structure-based discovery strategy. L19, the most potent inhibitor, exhibited good inhibitory activity (IC50 of 0.48 ± 0.02 μM) and remarkable metabolic stability in rat liver microsomes. Our study presents an example of discovery novel PDE4 inhibitors, which would be helpful for design and optimization of novel inhibitors in future.
Collapse
Affiliation(s)
- Zongmin Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Zhexin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Nemr MTM, Elshewy A, Ibrahim ML, El Kerdawy AM, Halim PA. Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction. Bioorg Chem 2024; 150:107566. [PMID: 38896936 DOI: 10.1016/j.bioorg.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Mohammed L Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
7
|
Zhao J, Bai J, Yu X, Zhang W, Zhao C, Ye J, Wei P, He K, Zou J. Synthesis, biological activities and mechanistic studies of C 20-ketone pachysandra alkaloids as anti-hepatocellular carcinoma agents. Mol Divers 2024:10.1007/s11030-024-10961-2. [PMID: 39158620 DOI: 10.1007/s11030-024-10961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 μM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- JinFeng Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jing Bai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - WenWen Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, China
| | - ChenLiang Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - JiangHai Ye
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Peng Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kang He
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Juan Zou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
8
|
Xu G, Li L, Lv M, Li C, Yu J, Zeng X, Meng X, Yu G, Liu K, Cheng S, Luo H, Xu B. Discovery of novel 4-trifluoromethyl-2-anilinoquinoline derivatives as potential anti-cancer agents targeting SGK1. Mol Divers 2024:10.1007/s11030-024-10951-4. [PMID: 39117890 DOI: 10.1007/s11030-024-10951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Given the critical necessity for the development of more potent anti-cancer drugs, a series of novel compounds incorporating trifluoromethyl groups within the privileged 2-anilinoquinoline scaffold was designed, synthesized, and subjected to biological evaluation through a pharmacophore hybridization strategy. Upon evaluating the in vitro anti-cancer characteristics of the target compounds, it became clear that compound 8b, which contains a (4-(piperazin-1-yl)phenyl)amino substitution at the 2-position of the quinoline skeleton, displayed superior efficacy against four cancer cell lines by inducing apoptosis and cell cycle arrest. Following research conducted in a PC3 xenograft mouse model, it was found that compound 8b exhibited significant anti-cancer efficacy while demonstrating minimal toxicity. Additionally, the analysis of a 217-kinase panel pinpointed SGK1 as a potential target for this compound class with anti-cancer capabilities. This finding was further verified through molecular docking analysis and cellular thermal shift assays. To conclude, our results emphasize that compound 8b can be used as a lead compound for the development of anti-cancer drugs that target SGK1.
Collapse
Affiliation(s)
- Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Lanlan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Mengfan Lv
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Cheng Li
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| |
Collapse
|
9
|
K A Abdelall E, Elshemy HAH, Philoppes JN, Abdel-Fattah MM, El-Nahaas ES, Mahmoud RR. Development of safe and antioxidant COX-2 inhibitors; Synthesis, molecular docking analysis and biological evaluation of novel pyrrolizine 5-carboxamides. Bioorg Chem 2024; 143:107098. [PMID: 38185010 DOI: 10.1016/j.bioorg.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the current study, a series of new pyrrolizine-5-carboxamide derivatives (5-8, 9a-d, 10a-d, 11a,b and 12a,b) were developed, synthesized and evaluated in terms of in vitro COX-2 enzyme inhibition. The in vivo anti-inflammatory evaluation was conducted on the most selective compounds (9a,b,d, 10b,c and 11a,b). For the most active five compounds (9a, 10b,c and 11a,b), ulcerogenic liability, histopathological examinations, physicochemical properties study and antioxidant activity were investigated. Also, nitric oxide donor activity was evaluated for compounds (6, 7, 10a-d and 12a,b), while, compounds (10c,d and 12a,b) showed a high significant result relative to the normal control. According to the findings of this study, 2,3-dihydro-1H-pyrrolizine-5-carboxamide (9a) demonstrated high antioxidant (highest beta-carotene concentration (10.825 µg/ml)) and anti-inflammatory activity (EIP = 63.6 %) with lower ulcerogenicity (ulcer index 13.67), presenting it as a promising candidate for treating inflammatory diseases which are complicated by oxidative tissue damage. Furthermore, MOE software tools docking software was used to carry out the in silico studies. Docking study for the most active compounds showed that all compounds made three to four H-bond interactions in COX-2 active site adopting excellent docking scores.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - El-Shaymaa El-Nahaas
- Departement of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rabab R Mahmoud
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|