1
|
Tan SK, Cebrik D, Plotnik D, Agostini ML, Boundy K, Hebner CM, Yeh WW, Pang PS, Moya J, Fogarty C, Darani M, Hayden FG. A Randomized, Placebo-Controlled Trial to Evaluate the Safety and Efficacy of VIR-2482 in Healthy Adults for Prevention of Influenza A Illness (PENINSULA). Clin Infect Dis 2024; 79:1054-1061. [PMID: 39036981 PMCID: PMC11478579 DOI: 10.1093/cid/ciae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Influenza A results in significant morbidity and mortality. VIR-2482, an engineered human monoclonal antibody with extended half-life, targets a highly conserved epitope on the stem region of influenza A hemagglutinin and may protect against seasonal and pandemic influenza. METHODS This double-blind, randomized, placebo-controlled, phase 2 study examined the safety and efficacy of VIR-2482 for seasonal influenza A illness prevention in unvaccinated healthy adults. Participants (N = 2977) were randomized 1:1:1 to receive VIR-2482 450 mg, VIR-2482 1200 mg, or placebo via intramuscular injection. Primary and secondary efficacy endpoints were the proportions of participants with reverse transcriptase-polymerase chain reaction-confirmed influenza A infection and either protocol-defined influenza-like illness (ILI) and Centers for Disease Control and Prevention-defined ILI or World Health Organization-defined ILI, respectively. RESULTS VIR-2482 450 mg and 1200 mg prophylaxis did not reduce the risk of protocol-defined ILI with reverse transcriptase-polymerase chain reaction-confirmed influenza A versus placebo (relative risk reduction, 3.8% [95% confidence interval (CI), -67.3 to 44.6] and 15.9% [95% CI, -49.3 to 52.3], respectively). At the 1200-mg dose, the relative risk reductions in influenza A illness were 57.2% (95% CI: -2.5 to 82.2) using Centers for Disease Control and Prevention ILI and 44.1% (95% CI: -50.5 to 79.3) using World Health Organization ILI definitions, respectively. Serum VIR-2482 levels were similar regardless of influenza status; variants with reduced VIR-2482 susceptibility were not detected. Local injection site reactions were mild and similar across groups. CONCLUSIONS VIR-2482 1200 mg intramuscular was well tolerated but did not significantly prevent protocol-defined ILI. Secondary endpoint analyses suggest this dose may have reduced influenza A illness. Trial registration: ClinicalTrials.gov identifier, NCT05567783.
Collapse
Affiliation(s)
- Susanna K Tan
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - David Plotnik
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - Keith Boundy
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - Wendy W Yeh
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - Jaynier Moya
- Pines Care Research Center, Inc., Pembroke Pines, Florida, USA
| | - Charles Fogarty
- Spartanburg Medical Research, Spartanburg, South Carolina, USA
| | | | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Sheng Y, Li Z, Lin X, Ma Y, Ren Y, Su Z, Ma G, Zhang S. The position of Spy Tag/Catcher system in hepatitis B core protein particles affects the immunogenicity and stability of the synthetic vaccine. Vaccine 2023:S0264-410X(23)00759-4. [PMID: 37391312 DOI: 10.1016/j.vaccine.2023.06.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Presenting exogenous antigens on virus-like particles (VLPs) through "plug-and-display" decoration strategies based on SpyTag/SpyCatcher isopeptide bonding have emerged as attractive technology for vaccine synthesis. However, whether the position of ligation site in VLPs will impose effects on immunogenicity and physiochemical properties of the synthetic vaccine remains rarely investigated. Here in the present work, the well-established hepatitis B core (HBc) protein was used as chassis to construct dual-antigen influenza nanovaccines, with the conserved epitope peptides derived from extracellular domain of matrix protein M2 (M2e) and hemagglutinin (HA) as target antigens. The M2e antigen was genetically fused to the HBc in the MIR region, together with the SpyTag peptide, which was fused either in the MIR region or at the N-terminal of the protein, so that a recombinant HA antigen (rHA) linked to SpyCatcher can be displayed on it, at two different localizations. Both synthetic nanovaccines showed ability in inducing strong M2e and rHA-specific antibodies and cellular immunogenicity; nevertheless, the one in which rHA was conjugated by N-terminal Tag ligation, was superior to another one synthesized by linking the rHA to MIR region SpyTagged-HBc in all aspects, including higher antigen-specific immunogenicity responses, lower anti-HBc carrier antibody, as well as better dispersion stability. Surface charge and hydrophobicity properties of the two synthetic nanovaccines were analyzed, results revealed that linking the rHA to MIR region SpyTagged-HBc lead to more significant and disadvantageous alteration in physiochemical properties of the HBc chassis. This study will expand our knowledge on "plug-and-display" decoration strategies and provide helpful guidance for the rational design of HBc-VLPs based modular vaccines by using SpyTag/Catcher synthesis.
Collapse
Affiliation(s)
- Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Shi L, Long Y, Zhu Y, Dong J, Chen Y, Feng H, Sun X. VLPs containing stalk domain and ectodomain of matrix protein 2 of influenza induce protection in mice. Virol J 2023; 20:38. [PMID: 36849974 PMCID: PMC9972598 DOI: 10.1186/s12985-023-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND As a result of antigenic drift, current influenza vaccines provide limited protection against circulating influenza viruses, and vaccines with broad cross protection are urgently needed. Hemagglutinin stalk domain and ectodomain of matrix protein 2 are highly conserved among influenza viruses and have great potential for use as a universal vaccine. METHODS In this study, we co-expressed the stalk domain and M2e on the surface of cell membranes and generated chimeric and standard virus-like particles of influenza to improve antigen immunogenicity. We subsequently immunized BALB/c mice through intranasal and intramuscular routes. RESULTS Data obtained demonstrated that vaccination with VLPs elicited high levels of serum-specific IgG (approximately 30-fold higher than that obtained with soluble protein), induced increased ADCC activity to the influenza virus, and enhanced T cell as well as mucosal immune responses. Furthermore, mice immunized by VLP had elevated level of mucosal HA and 4M2e specific IgA titers and cytokine production as compared to mice immunized with soluble protein. Additionally, the VLP-immunized group exhibited long-lasting humoral antibody responses and effectively reduced lung viral titers after the challenge. Compared to the 4M2e-VLP and mHA-VLP groups, the chimeric VLP group experienced cross-protection against the lethal challenge with homologous and heterologous viruses. The stalk domain specific antibody conferred better protection than the 4M2e specific antibody. CONCLUSION Our findings demonstrated that the chimeric VLPs anchored with the stalk domain and M2e showed efficacy in reducing viral loads after the influenza virus challenge in the mice model. This antibody can be used in humans to broadly protect against a variety of influenza virus subtypes. The chimeric VLPs represent a novel approach to increase antigen immunogenicity and are promising candidates for a universal influenza vaccine.
Collapse
Affiliation(s)
- Lili Shi
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Ying Long
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China
- Zhejiang Chinese Medical University (Jiaxing University Master Degree Cultivation Base), Bin Wen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yanyan Zhu
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China
- Zhejiang Chinese Medical University (Jiaxing University Master Degree Cultivation Base), Bin Wen Road 548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jingjian Dong
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Yan Chen
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Hao Feng
- Medical School of Jiaxing University, Jiahang Road 118, Nanhu District, Jiaxing, 314001, Zhejiang, People's Republic of China.
| | - Xianliang Sun
- School of Medicine, and The First Affiliated Hospital, Huzhou University, 759 2Nd Ring East Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
5
|
Solomai TV, Malakhova MV, Shitikov EA, Bespyatykh DA, Veselovskii VA, Semenenko TA, Smirnova DI, Gracheva AV, Faizuloev EB. Epstein–Barr Virus: Evaluation of gp350 and EBNA2 Gene Variability. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Cheung CSF, Gorman J, Andrews SF, Rawi R, Reveiz M, Shen CH, Wang Y, Harris DR, Nazzari AF, Olia AS, Raab J, Teng IT, Verardi R, Wang S, Yang Y, Chuang GY, McDermott AB, Zhou T, Kwong PD. Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure 2022; 30:993-1003.e6. [PMID: 35489332 DOI: 10.1016/j.str.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Several influenza antibodies with broad group 2 neutralization have recently been isolated. Here, we analyze the structure, class, and binding of one of these antibodies from an H7N9 vaccine trial, 315-19-1D12. The cryo-EM structure of 315-19-1D12 Fab in complex with the hemagglutinin (HA) trimer revealed the antibody to recognize the helix A region of the HA stem, at the supersite of vulnerability recognized by group 1-specific and by cross-group-neutralizing antibodies. 315-19-1D12 was derived from HV1-2 and KV2-28 genes and appeared to form a new antibody class. Bioinformatic analysis indicated its group 2 neutralization specificity to be a consequence of four key residue positions. We specifically tested the impact of the group 1-specific N33 glycan, which decreased but did not abolish group 2 binding of 315-19-1D12. Overall, this study highlights the recognition of a broad group 2-neutralizing antibody, revealing unexpected diversity in neutralization specificity for antibodies that recognize the HA stem supersite.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Aartse A, Eggink D, Claireaux M, van Leeuwen S, Mooij P, Bogers WM, Sanders RW, Koopman G, van Gils MJ. Influenza A Virus Hemagglutinin Trimer, Head and Stem Proteins Identify and Quantify Different Hemagglutinin-Specific B Cell Subsets in Humans. Vaccines (Basel) 2021; 9:717. [PMID: 34358138 PMCID: PMC8310015 DOI: 10.3390/vaccines9070717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody responses against the influenza A virus hemagglutinin (HA)-protein are studied intensively because they can protect against (re)infection. Previous studies have focused on antibodies targeting the head or stem domains, while other possible specificities are often not taken into account. To study such specificities, we developed a diverse set of HA-domain proteins based on an H1N1pdm2009-like influenza virus strain, including monomeric head and trimeric stem domain, as well as the full HA-trimer. These proteins were used to study the B cell and antibody responses in six healthy human donors. A large proportion of HA-trimer B cells bound exclusively to HA-trimer probe (54-77%), while only 8-18% and 9-23% were able to recognize the stem or head probe, respectively. Monoclonal antibodies (mAbs) were isolated and three of these mAbs, targeting the different domains, were characterized in-depth to confirm the binding profile observed in flow cytometry. The head-directed mAb, targeting an epitope distinct from known head-specific mAbs, showed relatively broad H1N1 neutralization and the stem-directed mAb was able to broadly neutralize diverse H1N1 viruses. Moreover, we identified a trimer-directed mAb that did not compete with known head or stem domain specific mAbs, suggesting that it targets an unknown epitope or conformation of influenza virus' HA. These observations indicate that the described method can characterize the diverse antibody response to HA and might be able to identify HA-specific B cells and antibodies with previously unknown specificities that could be relevant for vaccine design.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Mathieu Claireaux
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| |
Collapse
|