1
|
Guo M, Peng J, Guo P, Wang Q, Zhang L, Shen H, Chen F, Zhang P, Lin S, Gao H, Peng H, Mou R, Huang J, Wang J, Luo YS, Zhang K. Inhalation of 2, 4-di-tert-butylphenol-Loaded micelles suppresses respiratory syncytial virus infection in mice. Antiviral Res 2024; 226:105880. [PMID: 38608838 DOI: 10.1016/j.antiviral.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Human respiratory syncytial virus (RSV) is a common cause of respiratory infections in infants, young children, and elderly people. However, there are no effective treatments or vaccines available in most countries. In this study, we explored the anti-RSV potential of 2, 4-Di-tert-butylphenol (2, 4-DTBP), a compound derived from Houttuynia cordata Thunb. To overcome the poor solubility of 2, 4-DTBP, we encapsulated it in polymeric micelles and delivered it by inhalation. We found that 2, 4-DTBP-loaded micelles inhibited RSV infection in vitro and improved survival, lung pathology, and viral clearance in RSV-infected mice. Our results suggested that 2, 4-DTBP-loaded micelle is a promising novel therapeutic agent for RSV infection.
Collapse
Affiliation(s)
- Mingyang Guo
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Pengcheng Guo
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai 201203, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Lin Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Huyan Shen
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Fang Chen
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Pingping Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Siyu Lin
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Han Gao
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Hong Peng
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Rong Mou
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai 201203, China
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Emergency, Liupanshui Hospital of The Affiliated Hospital of Guizhou Medical University, Liupanshui 553000, China.
| | - Ke Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province / Virology Institute / The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Ma J, Chen L, Tang S, Shi Y. Efficacy and safety of respiratory syncytial virus vaccination during pregnancy to prevent lower respiratory tract illness in newborns and infants: a systematic review and meta-analysis of randomized controlled trials. Front Pediatr 2024; 11:1260740. [PMID: 38357264 PMCID: PMC10864603 DOI: 10.3389/fped.2023.1260740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
To evaluate the effectiveness and safety of respiratory syncytial virus (RSV) vaccination during pregnancy in preventing lower respiratory tract infection (LRTI) in infants and neonates, we conducted a systematic search of randomized controlled trials (RCTs) in five databases (PubMed, Embase and Cochrane Library, Web of Science, Cochrane Center Register of Controlled trial) until 1 May 2023. We performed a meta-analysis of the eligible trials using RevMan5.4.1 software. Our analysis included six articles and five RCTs. The meta-analysis revealed significant differences in the incidences of LRTI [risk ratio (RR): 0.64; 95% confidence interval (CI): 0.43, 0.96; p = 0.03)] and severe LRTI (RR: 0.37; 95% CI: 0.18, 0.79; p = 0.01) between the vaccine group and the placebo group for newborns and infants. These differences were observed at 90, 120, and 150 days after birth (p = 0.003, p = 0.05, p = 0.02, p = 0.03, p = 0.009, p = 0.05). At 180 days after birth, there was a significant difference observed in the incidence of LRTI between the two groups (RR: 0.43; 95% CI: 0.21, 0.90; p = 0.02). The safety results showed a significant difference in the incidence of common adverse events between the two groups (RR: 1.08; 95% CI: 1.04, 1.12; p < 0.0001). However, there was no significant difference observed in the incidence of serious adverse events (RR: 1.05; 95% CI: 0.97, 1.15; p = 0.23), common and serious adverse events (RR: 1.02; 95% CI: 0.96, 1.10; p = 0.23), or common and serious adverse events among pregnant women and newborns and infants (RR: 0.98; 95% CI: 0.93, 1.04; p = 0.52). In conclusion, maternal RSV vaccination is an effective and safe immunization strategy for preventing LRTI in postpartum infants, with greater efficacy observed within the first 150 days after birth.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Department of Neonatology, SongShan General Hospital, Chongqing, China
| | - Long Chen
- Department of Neonatology, Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
| | - ShiFang Tang
- Department of Neonatology, SongShan General Hospital, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| |
Collapse
|
3
|
Kim MJ, Chu KB, Lee SH, Mao J, Eom GD, Yoon KW, Moon EK, Quan FS. Assessing the protection elicited by virus-like particles expressing the RSV pre-fusion F and tandem repeated G proteins against RSV rA2 line19F infection in mice. Respir Res 2024; 25:7. [PMID: 38178222 PMCID: PMC10765939 DOI: 10.1186/s12931-023-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
Excessive pulmonary inflammation is the hallmark of respiratory syncytial virus (RSV) infection hindering efficacious RSV vaccine development. Yet, the vast majority of the experimental RSV vaccine studies use laboratory-adapted RSV strains that do not reflect the highly pathogenic and inflammatory nature of the virus found in clinical settings. Here, we re-evaluated the protective efficacy of the virus-like particle (VLP) vaccine co-expressing the pre-fusion (pre-F) protein and G protein with tandem repeats (Gt) reported in our previous study against the recombinant RSV rA2-line19F strain, which inflicts severe mucus production and inflammation in mice. VLP vaccine immunization elicited virus-specific serum antibody responses that mediated RSV rA2-line19F virus neutralization. VLP vaccine immunization promoted Th1 immune response development in the spleens and CD8 + T cell influx into the lungs of mice, which are essential for efficient viral clearance and dampened inflammatory response. When compared to the VLPs expressing only the pre-F antigen, those co-expressing both pre-F and Gt antigens conferred better protection in mice against rA2-line19F challenge infection. Overall, our data suggest that the pre-clinical VLP vaccine co-expressing RSV pre-F and Gt antigens can effectively protect mice against RSV strains that resemble pathogenic clinical isolates.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Bueno CA, Salinas FM, Vazquez L, Alché LE, Michelini FM. Two synthetic steroid analogs reduce human respiratory syncytial virus replication and the immune response to infection both in vitro and in vivo. Heliyon 2023; 9:e20148. [PMID: 37822633 PMCID: PMC10562772 DOI: 10.1016/j.heliyon.2023.e20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
HRSV is responsible for many acute lower airway infections and hospitalizations in infants, the elderly and those with weakened immune systems around the world. The strong inflammatory response that mediates viral clearance contributes to pathogenesis, and is positively correlated with disease severity. There is no specific effective therapy on hand. Antiviral synthetic stigmastanes (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) and 22,23-dihydroxystigmasta-1,4-dien-3-one (Compound 2) have shown to be active inhibiting unrelated virus like Herpes Simplex type 1 virus (HSV-1) and Adenovirus, without cytotoxicity. We have also shown that Compound 1 modulates the activation of cell signaling pathways and cytokine secretion in infected epithelial cells as well as in inflammatory cells activated by nonviral stimuli. In the present work, we investigated the inhibitory effect of both compounds on HRSV replication and their modulatory effect on infected epithelial and inflammatory cells. We show that compounds 1 and 2 inhibit in vitro HRSV replication and propagation and reduce cytokine secretion triggered by HRSV infection in epithelial and inflammatory cells. The compounds reduce viral loads and inflammatory infiltration in the lungs of mice infected with HRSV.
Collapse
Affiliation(s)
- Carlos A. Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Franco M. Salinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - L. Vazquez
- UOCCB (Unidad Operativa Centro de Contención Biológica), Instituto Dr. Carlos G. Malbrán, ANLIS (Administración Nacional de Laboratorios e Institutos de Salud), Argentina
| | - Laura E. Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Flavia M. Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Rezende W, Neal HE, Dutch RE, Piedra PA. The RSV F p27 peptide: current knowledge, important questions. Front Microbiol 2023; 14:1219846. [PMID: 37415824 PMCID: PMC10320223 DOI: 10.3389/fmicb.2023.1219846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) remains a leading cause of hospitalizations and death for young children and adults over 65. The worldwide impact of RSV has prioritized the search for an RSV vaccine, with most targeting the critical fusion (F) protein. However, questions remain about the mechanism of RSV entry and RSV F triggering and fusion promotion. This review highlights these questions, specifically those surrounding a cleaved 27 amino acids long peptide within F, p27.
Collapse
Affiliation(s)
- Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States
| | - Hadley E. Neal
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rebecca E. Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Chen J, Tan S, Avadhanula V, Moise L, Piedra PA, De Groot AS, Bahl J. Diversity and evolution of computationally predicted T cell epitopes against human respiratory syncytial virus. PLoS Comput Biol 2023; 19:e1010360. [PMID: 36626370 PMCID: PMC9870173 DOI: 10.1371/journal.pcbi.1010360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory infection. Despite more than 60 years of research, there is no licensed vaccine. While B cell response is a major focus for vaccine design, the T cell epitope profile of RSV is also important for vaccine development. Here, we computationally predicted putative T cell epitopes in the Fusion protein (F) and Glycoprotein (G) of RSV wild circulating strains by predicting Major Histocompatibility Complex (MHC) class I and class II binding affinity. We limited our inferences to conserved epitopes in both F and G proteins that have been experimentally validated. We applied multidimensional scaling (MDS) to construct T cell epitope landscapes to investigate the diversity and evolution of T cell profiles across different RSV strains. We find the RSV strains are clustered into three RSV-A groups and two RSV-B groups on this T epitope landscape. These clusters represent divergent RSV strains with potentially different immunogenic profiles. In addition, our results show a greater proportion of F protein T cell epitope content conservation among recent epidemic strains, whereas the G protein T cell epitope content was decreased. Importantly, our results suggest that RSV-A and RSV-B have different patterns of epitope drift and replacement and that RSV-B vaccines may need more frequent updates. Our study provides a novel framework to study RSV T cell epitope evolution. Understanding the patterns of T cell epitope conservation and change may be valuable for vaccine design and assessment.
Collapse
Affiliation(s)
- Jiani Chen
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
| | - Swan Tan
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leonard Moise
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- EpiVax Inc., Providence, Rhode Island, United States of America
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne S. De Groot
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- EpiVax Inc., Providence, Rhode Island, United States of America
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease and Emergence Response, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Chu KB, Lee SH, Kim MJ, Kim AR, Moon EK, Quan FS. Virus-like particles coexpressing the PreF and Gt antigens of respiratory syncytial virus confer protection in mice. Nanomedicine (Lond) 2022; 17:1159-1171. [DOI: 10.2217/nnm-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The purpose of this study was to assess the protective efficacy of virus-like particles (VLPs) co-expressing the pre-fusogenic (PreF) and G protein with tandem repeats (Gt) antigens of respiratory syncytial virus (RSV) in mice. Materials & methods: VLP constructs expressing PreF, Gt or both were used to immunize mice, and the protective efficacies were evaluated using antibody responses, neutralizing antibody titers, T-cell responses, histopathological assessment and plaque assay. Results: PreF+Gt VLP immunization elicited strong RSV-specific antibody responses and pulmonary T-cell responses that contributed to lessening virus titer and inflammation. Conclusion: Our findings suggest that coexpressing PreF and Gt antigens elicits better protection than either one alone. This combinatorial approach could assist in future RSV vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ah-Ra Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|