1
|
Dülek Ö, Mutlu G, Koçkaya ES, Can H, Karakavuk M, Değirmenci Döşkaya A, Gürüz AY, Döşkaya M, Ün C. Computational identification of monkeypox virus epitopes to generate a novel vaccine antigen against Mpox. Biologicals 2024; 88:101798. [PMID: 39471737 DOI: 10.1016/j.biologicals.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
Monkeypox virus (MPXV) belonging to poxviridae family causes chronic viral disease in various mammals including human and monkeys. Conventional vaccines developed against smallpox of poxviridae, are not specific against Mpox. Also, they can cause various side effects after vaccination. In this study, we aimed to analyze the A17L, A28L, A37R, A43R, E8L, H3L, B6R, and M1R structural proteins of MPXV and identify epitopes in them which can be used to generate vaccine antigens. Among the proteins analyzed, the M1R protein was predicted to be more appropriate for use in vaccine research due to its high antigenicity value and other physicochemical features. Also, A17L, B6R and E8L had high antigenicity values. E8L protein was more conserved while the A37R, A43R, and B6R proteins had signal peptides. Although a total of eight B cell epitopes were predicted in all proteins analyzed, CNGETK epitope belonging to B6R protein had the highest antigenicity value (1.7083), as well as was non-allergenic, non-toxic, and soluble. Based on T cell epitope analyses performed on all proteins, fourteen MHC-I/II epitopes were predicted that are antigenic, non-allergenic and non-toxic, as well as soluble. Among them, MHC-I related-HEIYDRNVGF epitope in A28L protein had the highest antigenicity value (1.6650) and MHC-II related-IGNIKIVQIDIRDIK epitope in A37R protein had the highest antigenicity value (2.0280). In conclusion, eight structural proteins of MPXV were successfully analyzed and 22 important epitopes were identified that could serve as vaccine antigens or in serological studies to develop diagnostic tools.
Collapse
Affiliation(s)
- Özge Dülek
- Ege University Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye
| | - Gizem Mutlu
- Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye
| | - Ecem Su Koçkaya
- Ege University Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye
| | - Hüseyin Can
- Ege University Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye; Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye.
| | - Muhammet Karakavuk
- Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University Ödemiş Vocational School, İzmir, Turkiye
| | - Aysu Değirmenci Döşkaya
- Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkiye
| | - Adnan Yüksel Gürüz
- Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkiye
| | - Mert Döşkaya
- Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkiye
| | - Cemal Ün
- Ege University Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye; Ege University Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University Vaccine Development Application and Research Center, İzmir, Turkiye
| |
Collapse
|
2
|
Kafle A, Ojha SC. Advancing vaccine development against Opisthorchis viverrini: A synergistic integration of omics technologies and advanced computational tools. Front Pharmacol 2024; 15:1410453. [PMID: 39076588 PMCID: PMC11284087 DOI: 10.3389/fphar.2024.1410453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
The liver fluke O. viverrini (Opisthorchis viverrini), a neglected tropical disease (NTD), endemic to the Great Mekong Subregion (GMS), mainly afflicts the northeastern region of Thailand. It is a leading cause of cholangiocarcinoma (CCA) in humans. Presently, the treatment modalities for opisthorchiasis incorporate the use of the antihelminthic drug praziquantel, the rapid occurrence of reinfection, and the looming threat of drug resistance highlight the urgent need for vaccine development. Recent advances in "omics" technologies have proven to be a powerful tool for such studies. Utilizing candidate proteins identified through proteomics and refined via immunoproteomics, reverse vaccinology (RV) offers promising prospects for designing vaccines targeting essential antibody responses to eliminate parasite. Machine learning-based computational tools can predict epitopes of candidate protein/antigens exhibiting high binding affinities for B cells, MHC classes I and II, indicating strong potential for triggering both humoral and cell-mediated immune responses. Subsequently, these vaccine designs can undergo population-specific testing and docking/dynamics studies to assess efficacy and synergistic immunogenicity. Hence, refining proteomics data through immunoinformatics and employing computational tools to generate antigen-specific targets for trials offers a targeted and efficient approach to vaccine development that applies to all domains of parasite infections. In this review, we delve into the strategic antigen selection process using omics modalities for the O. viverrini parasite and propose an innovative framework for vaccine design. We harness omics technologies to revolutionize vaccine development, promising accelerated discoveries and streamlined preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Köseoğlu AE, Özgül F, Işıksal EN, Şeflekçi Y, Tülümen D, Özgültekin B, Deniz Köseoğlu G, Özyiğit S, Ihlamur M, Ekenoğlu Merdan Y. In silico discovery of diagnostic/vaccine candidate antigenic epitopes and a multi-epitope peptide vaccine (NaeVac) design for the brain-eating amoeba Naegleria fowleri causing human meningitis. Gene 2024; 902:148192. [PMID: 38253295 DOI: 10.1016/j.gene.2024.148192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Naegleria fowleri, the brain-eating amoeba, is a free-living amoeboflagellate with three different life cycles (trophozoite, flagellated, and cyst) that lives in a variety of habitats around the world including warm freshwater and soil. It causes a disease called naegleriasis leading meningitis and primary amoebic meningoencephalitis (PAM) in humans. N. fowleri is transmitted through contaminated water sources such as insufficiently chlorinated swimming pool water or contaminated tap water, and swimmers are at risk. N. fowleri is found all over the world, and most infections were reported in both developed and developing countries with high mortality rates and serious clinical findings. Until now, there is no FDA approved vaccine and early diagnosis is urgent against this pathogen. In this study, by analyzing the N. fowleri vaccine candidate proteins (Mp2CL5, Nfa1, Nf314, proNP-A and proNP-B), it was aimed to discover diagnostic/vaccine candidate epitopes and to design a multi-epitope peptide vaccine against this pathogen. After the in silico evaluation, three prominent diagnostic/vaccine candidate epitopes (EAKDSK, LLPHIRILVY, and FYAKLLPHIRILVYS) with the highest antigenicities were discovered and a potentially highly immunogenic/antigenic multi-epitope peptide vaccine (NaeVac) was designed against the brain-eating amoeba N. fowleri causing human meningitis.
Collapse
Affiliation(s)
- Ahmet Efe Köseoğlu
- Duisburg-Essen University, Faculty of Chemistry, Department of Environmental Microbiology and Biotechnology, Essen, Germany.
| | - Filiz Özgül
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Elif Naz Işıksal
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey; Biruni University, Faculty of Pharmacy, Department of Pharmacy, Istanbul, Turkey
| | - Yusuf Şeflekçi
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Deniz Tülümen
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Buminhan Özgültekin
- Bogaziçi University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | | | - Sena Özyiğit
- Biruni University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Murat Ihlamur
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey; Yıldız Technical University, Graduate School of Science and Engineering, Department of Bioengineering, Istanbul, Turkey
| | - Yağmur Ekenoğlu Merdan
- Biruni University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
4
|
Bakhshipour F, Zibaei M, Rokni MB, Miahipour A, Firoozeh F, Beheshti M, Beikzadeh L, Alizadeh G, Aryaeipour M, Raissi V. Comparative evaluation of real-time PCR and ELISA for the detection of human fascioliasis. Sci Rep 2024; 14:3865. [PMID: 38366006 PMCID: PMC10873325 DOI: 10.1038/s41598-024-54602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Fascioliasis is a zoonotic parasitic infection caused by Fasciola species in humans and animals. Despite significant advances in vaccination and new therapeutic agents, little attention has been paid to validating methods for the diagnosis of fascioliasis in humans. Serological techniques are convenient assays that significantly improves the diagnosis of Fasciola infection. However, a more sensitive method is required. The aim of this study was to compare the Real-Time PCR technique with the indirect-ELISA for the detection of Fasciola hepatica in human. Using a panel of sera from patients infected with Fasciola hepatica (n = 51), other parasitic infections (n = 7), and uninfected controls (n = 12), we optimized an ELISA which employs an excretory-secretory antigens from F. hepatica for the detection of human fascioliasis. After DNA extraction from the samples, molecular analysis was done using Real-Time PCR technique based on the Fasciola ribosomal ITS1 sequence. Of 70 patient serum samples, 44 (62.86%) samples were identified as positive F. hepatica infection using ELISA and Real-Time PCR assays. There was no cross-reaction with other parasitic diseases such as toxoplasmosis, leishmaniasis, taeniasis, hydatidosis, trichinosis, toxocariasis, and strongyloidiasis. The significant difference between the agreement and similarity of the results of patients with indirect ELISA and Real-Time PCR was 94.4% and 99.2%, respectively (Cohen's kappa ≥ 0.7; P = 0.02). Based on the Kappa agreement findings, the significant agreement between the results of ELISA and Real-Time PCR indicates the accuracy and reliability of these tests in the diagnosis of F. hepatica in humans.
Collapse
Affiliation(s)
- Fatemeh Bakhshipour
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran.
| | - Mohammad Bagher Rokni
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Miahipour
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoud Beheshti
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gita Alizadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Aryaeipour
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Raissi
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Köseoğlu AE, Can H, Güvendi M, Erkunt Alak S, Değirmenci Döşkaya A, Karakavuk M, Döşkaya M, Ün C. Molecular characterization of Anaplasma ovis Msp4 protein in strains isolated from ticks in Turkey: A multi-epitope synthetic vaccine antigen design against Anaplasma ovis using immunoinformatic tools. Biologicals 2024; 85:101749. [PMID: 38325003 DOI: 10.1016/j.biologicals.2024.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Tick-borne pathogens increasingly threaten animal and human health as well as cause great economic loss in the livestock industry. Among these pathogens, Anaplasma ovis causing a decrease in meat and milk yield is frequently detected in sheep in many countries including Turkey. This study aimed to reveal potential vaccine candidate epitopes in Msp4 protein using sequence data from Anaplasma ovis isolates and then to design a multi-epitope protein to be used in vaccine formulations against Anaplasma ovis. For this purpose, Msp4 gene was sequenced from Anaplasma ovis isolates (n:6) detected in ticks collected from sheep in Turkey and the sequence data was compared with previous sequences from different countries in order to detect the variations of Msp4 gene/protein. Potential vaccine candidate and diagnostic epitopes were predicted using various immunoinformatics tools. Among the discovered vaccine candidate epitopes, antigenic and conserved were selected, and then a multi-epitope protein was designed. The designed vaccine protein was tested for the assessment of TLR-2, IgG, and IFN-g responses by molecular docking and immune simulation analyses. Among the discovered epitopes, EVASEGSGVM and YQFTPEISLV epitopes with properties of high antigenicity, non-allergenicity, and non-toxicity were proposed to be used for Anaplasma ovis in further serodiagnostic and vaccine studies.
Collapse
Affiliation(s)
- Ahmet Efe Köseoğlu
- Duisburg-Essen University, Faculty of Chemistry, Department of Environmental Microbiology and Biotechnology, Essen, Germany
| | - Hüseyin Can
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye; Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye
| | - Mervenur Güvendi
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye
| | - Sedef Erkunt Alak
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye; Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye
| | - Aysu Değirmenci Döşkaya
- Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Turkiye
| | - Muhammet Karakavuk
- Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University, Odemis Vocational School, İzmir, Turkiye
| | - Mert Döşkaya
- Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Turkiye
| | - Cemal Ün
- Ege University, Faculty of Science, Department of Biology, Molecular Biology Section, İzmir, Turkiye; Ege University, Vaccine Development Application and Research Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Turkiye.
| |
Collapse
|
6
|
Zhang G, Han L, Zhao Y, Li Q, Wang S, Shi H. Development and evaluation of a multi-epitope subunit vaccine against Mycoplasma synoviae infection. Int J Biol Macromol 2023; 253:126685. [PMID: 37666406 DOI: 10.1016/j.ijbiomac.2023.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
7
|
Koçkaya ES, Can H, Yaman Y, Ün C. In silico discovery of epitopes of gag and env proteins for the development of a multi-epitope vaccine candidate against Maedi Visna Virus using reverse vaccinology approach. Biologicals 2023; 84:101715. [PMID: 37793308 DOI: 10.1016/j.biologicals.2023.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Maedi Visna Virus (MVV) causes a chronic viral disease in sheep. Since there is no specific therapeutic drug that targets MVV, development of a vaccine against the MVV is inevitable. This study aimed to analyze the gag and env proteins as vaccine candidate proteins and to identify epitopes in these proteins. In addition, it was aimed to construct a multi-epitope vaccine candidate. According to the obtained results, the gag protein was detected to be more conserved and had a higher antigenicity value. Also, the number of alpha helix in the secondary structure was higher and transmembrane helices were not detected. Although many B cell and MHC-I/II epitopes were predicted, only 19 of them were detected to have the properties of antigenic, non-allergenic, non-toxic, soluble, and non-hemolytic. Of these epitopes, five were remarkable due to having the highest antigenicity value. However, the final multi-epitope vaccine was constructed with 19 epitopes. A strong affinity was shown between the final multi-epitope vaccine and TLR-2/4. In conclusion, the gag protein was a better antigen. However, both proteins had epitopes with high antigenicity value. Also, the final multi-epitope vaccine construct had a potential to be used as a peptide vaccine due to its immuno-informatics results.
Collapse
Affiliation(s)
- Ecem Su Koçkaya
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye
| | - Hüseyin Can
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye
| | - Yalçın Yaman
- Siirt University Faculty of Veterinary Medicine, Department of Genetics, Siirt, Türkiye
| | - Cemal Ün
- Ege University Faculty of Science Department of Biology Molecular Biology Section, İzmir, Türkiye.
| |
Collapse
|
8
|
Fereig RM, Metwally S, El-Alfy ES, Abdelbaky HH, Shanab O, Omar MA, Alsayeqh AF. High relatedness of bioinformatic data and realistic experimental works on the potentials of Fasciola hepatica and F. gigantica cathepsin L1 as a diagnostic and vaccine antigen. Front Public Health 2022; 10:1054502. [PMID: 36568750 PMCID: PMC9768368 DOI: 10.3389/fpubh.2022.1054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Fascioliasis is a parasitic foodborne disease caused by the liver flukes, Fasciola hepatica and F. gigantica. Such parasites cause serious illness in numerous domestic animals and also in humans. Following infection, the parasite secretes a variety of molecules that immediately interact with the host immunity to establish successful infection. These molecules include cathepsin L peptidase 1 (CatL1); the highly investigated diagnostic and vaccine antigens using various animal models. However, a few studies have analyzed the potentials of FhCatL1 as a diagnostic or vaccine antigen using bioinformatic tools and much less for FgCatL1. The present study provides inclusive and exclusive information on the physico-chemical, antigenic and immunogenic properties of F. hepatica cathepsin L1 (FhCatL1) protein using multiple bioinformatic analysis tools and several online web servers. Also, the validation of our employed available online servers was conducted against a huge collection of previously published studies focusing on the properties of FhCatL1as a diagnostic and vaccine antigen. Methods For this purpose, the secondary, tertiary, and quaternary structure of FhCatL1 protein were also predicted and analyzed using the SWISS-MODEL server. Validation of the modeled structures was performed by Ramachandran plots. The antigenic epitopes of the protein were predicted by IEDB server. Results and discussion Our findings revealed the low similarity of FhCatL1 with mammalian CatL1, lacking signal peptides or transmembrane domain, and the presence of 33 phosphorylation sites. Also, the containment of FhCatL1 for many topological, physico-chemical, immunological properties that favored its function of solubility and interaction with the immune components were reported. In addition, the earlier worldwide reports documented the high efficacy of FhCatL1 as a diagnostic and vaccine antigen in different animals. Altogether, FhCatL1 is considered an excellent candidate for using in commercialized diagnostic assays or vaccine products against fascioliasis in different animal species. Our assessment also included FgCatL1 and reported very similar findings and outputs to those of FhCatL1.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - El-Sayed El-Alfy
- Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan H. Abdelbaky
- Doctor of Veterinary Sciences, Veterinary Clinic, Veterinary Directorate, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia,*Correspondence: Abdullah F. Alsayeqh
| |
Collapse
|
9
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|