1
|
Crowe LP, Gioseffi A, Bertolini MS, Docampo R. Inorganic Polyphosphate Is in the Surface of Trypanosoma cruzi but Is Not Significantly Secreted. Pathogens 2024; 13:776. [PMID: 39338967 PMCID: PMC11434814 DOI: 10.3390/pathogens13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that can lead to the development of cardiac fibrosis, which is characterized by the deposition of extracellular matrix (ECM) components in the interstitial region of the myocardium. The parasite itself can induce myofibroblast differentiation of cardiac fibroblast in vitro, leading to increased expression of ECM. Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that can also induce myofibroblast differentiation and deposition of ECM components and is highly abundant in T. cruzi. PolyP can modify proteins post-translationally by non-enzymatic polyphosphorylation of lysine residues of poly-acidic, serine-(S) and lysine (K)-rich (PASK) motifs. In this work, we used a bioinformatics screen and identified the presence of PASK domains in several surface proteins of T. cruzi. We also detected polyP in the external surface of its different life cycle stages and confirmed the stimulation of host cell fibrosis by trypomastigote infection. However, we were not able to detect significant secretion of the polymer or activation of transforming growth factor beta (TGF-β), an important factor for the generation of fibrosis by inorganic polyP- or trypomastigote-conditioned medium.
Collapse
Affiliation(s)
- Logan P Crowe
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anna Gioseffi
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Mayara S Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Dumonteil E, Tu W, Desale H, Goff K, Marx P, Ortega-Lopez J, Herrera C. Immunoglobulin and T cell receptor repertoire changes induced by a prototype vaccine against Chagas disease in naïve rhesus macaques. J Biomed Sci 2024; 31:58. [PMID: 38824576 PMCID: PMC11143712 DOI: 10.1186/s12929-024-01050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA.
| | - Weihong Tu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| | - Hans Desale
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Preston Marx
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
3
|
Hotez PJ. A Journey in Science: Molecular vaccines for global child health in troubled times of anti-science. Mol Med 2024; 30:37. [PMID: 38491420 PMCID: PMC10943906 DOI: 10.1186/s10020-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
My scientific life in translational medicine runs in two parallel, yet often converging paths. The first, is four-decade-long commitment to develop new vaccines for parasitic and neglected tropical diseases, as well as pandemic threats. This includes a vaccine for human hookworm infection that I began as an MD-PhD student in New York City in the 1980s, and a new low-cost COVID vaccine that reached almost 100 million people in low- and middle-income countries. Alongside this life in scientific research, is one in public engagement for vaccine and neglected disease diplomacy to ensure that people who live in extreme poverty can benefit from access to biomedical innovations. A troubling element has been the daunting task of countering rising antivaccine activism, which threatens to undermine our global vaccine ecosystem. Yet, this activity may turn out to become just as important for saving lives as developing new vaccines.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Hotez PJ. Vaccine Preventable Disease and Vaccine Hesitancy. Med Clin North Am 2023; 107:979-987. [PMID: 37806729 DOI: 10.1016/j.mcna.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Global immunization programs have saved tens of millions of lives over the last 2 decades. Now, the recent successes of COVID-19 vaccines having saved more than 3 million lives in North America during the pandemic may open the door to accelerate technologies for other emerging infection vaccines. New vaccines for respiratory syncytial virus, norovirus, influenza, herpes simplex virus, shingles, dengue fever, enteric bacterial infections, malaria, and Chagas disease are advancing through clinical development and could become ready for delivery over the next 5 years. The successful delivery of these new vaccines may require expanded advocacy and communications efforts.
Collapse
Affiliation(s)
- Peter J Hotez
- Department of Pediatrics and Molecular Virology and Microbiology, Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Texas Medical Center, One Baylor Plaza, Suite 164a, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Clímaco MDC, de Figueiredo LA, Lucas RC, Pinheiro GRG, Dias Magalhães LM, Oliveira ALGD, Almeida RM, Barbosa FS, Castanheira Bartholomeu D, Bueno LL, Mendes TA, Zhan B, Jones KM, Hotez P, Bottazzi ME, Oliveira FMS, Fujiwara RT. Development of chimeric protein as a multivalent vaccine for human Kinetoplastid infections: Chagas disease and leishmaniasis. Vaccine 2023; 41:5400-5411. [PMID: 37479612 DOI: 10.1016/j.vaccine.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Leishmania spp. and Trypanosoma cruzi are parasitic kinetoplastids of great medical and epidemiological importance since they are responsible for thousands of deaths and disability-adjusted life-years annually, especially in low- and middle-income countries. Despite efforts to minimize their impact, current prevention measures have failed to fully control their spread. There are still no vaccines available. Taking into account the genetic similarity within the Class Kinetoplastida, we selected CD8+ T cell epitopes preserved among Leishmania spp. and T. cruzi to construct a multivalent and broad-spectrum chimeric polyprotein vaccine. In addition to inducing specific IgG production, immunization with the vaccine was able to significantly reduce parasite burden in the colon, liver and skin lesions from T. cruzi, L. infantum and L. mexicana challenged mice, respectively. These findings were supported by histopathological analysis, which revealed decreased inflammation in the colon, a reduced number of degenerated hepatocytes and an increased proliferation of connective tissue in the skin lesions of the corresponding T. cruzi, L. infantum and L. mexicana vaccinated and challenged mice. Collectively, our results support the protective effect of a polyprotein vaccine approach and further studies will elucidate the immune profile associated with this protection. Noteworthy, our results act as conceptual proof that a single multi-kinetoplastida vaccine can be used effectively to control different infectious etiologies, which in turn can have a profound impact on the development of a new generation of vaccines.
Collapse
Affiliation(s)
- Marianna de Carvalho Clímaco
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza Almeida de Figueiredo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rayane Cristina Lucas
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luísa Mourão Dias Magalhães
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Laura Grossi de Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Martins Almeida
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lilian Lacerda Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Antonio Mendes
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology Applied to Agropecuaria, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Bin Zhan
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn Marie Jones
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Peter Hotez
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Poveda C, Leão AC, Mancino C, Taraballi F, Chen YL, Adhikari R, Villar MJ, Kundu R, Nguyen DM, Versteeg L, Strych U, Hotez PJ, Bottazzi ME, Pollet J, Jones KM. Heterologous mRNA-protein vaccination with Tc24 induces a robust cellular immune response against Trypanosoma cruzi, characterized by an increased level of polyfunctional CD8 + T-cells. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100066. [PMID: 37534309 PMCID: PMC10393535 DOI: 10.1016/j.crimmu.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Tc24 is a Trypanosoma cruzi-derived flagellar protein that, when formulated with a TLR-4 agonist adjuvant, induces a balanced immune response in mice, elevating IgG2a antibody titers and IFN-γ levels. Furthermore, vaccination with the recombinant Tc24 protein can reduce parasite levels and improve survival during acute infection. Although some mRNA vaccines have been proven to elicit a stronger immune response than some protein vaccines, they have not been used against T. cruzi. This work evaluates the immunogenicity of a heterologous prime/boost vaccination regimen using protein and mRNA-based Tc24 vaccines. Mice (C57BL/6) were vaccinated twice subcutaneously, three weeks apart, with either the Tc24-C4 protein + glucopyranosyl A (GLA)-squalene emulsion, Tc24 mRNA Lipid Nanoparticles, or with heterologous protein/mRNA or mRNA/protein combinations, respectively. Two weeks after the last vaccination, mice were euthanized, spleens were collected to measure antigen-specific T-cell responses, and sera were collected to evaluate IgG titers and isotypes. Heterologous presentation of the Tc24 antigen generated antigen-specific polyfunctional CD8+ T cells, a balanced Th1/Th2/Th17 cytokine profile, and a balanced humoral response with increased serum IgG, IgG1 and IgG2c antibody responses. We conclude that heterologous vaccination using Tc24 mRNA to prime and Tc24-C4 protein to boost induces a broad and robust antigen-specific immune response that was equivalent or superior to two doses of a homologous protein vaccine, the homologous mRNA vaccine and the heterologous Tc24-C4 Protein/mRNA vaccine.
Collapse
Affiliation(s)
- Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ana Carolina Leão
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Yi-Lin Chen
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakesh Adhikari
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Jose Villar
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Rakhi Kundu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Duc M. Nguyen
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Leroy Versteeg
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Cell Biology and Immunology Group, Wageningen University & Research, the Netherlands
| | - Ulrich Strych
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Peter J. Hotez
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Kathryn M. Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|