1
|
Bakatchina S, Weissland T, Astier M, Pradon D, Faupin A. Performance, asymmetry and biomechanical parameters in wheelchair rugby players. Sports Biomech 2024; 23:884-897. [PMID: 33792504 DOI: 10.1080/14763141.2021.1898670] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The practice of the wheelchair rugby is becoming more and more worldwide. However, few biomechanical studies have focused on this sport. The aim of this study was to compare kinematic parameters of wheelchair rugby players, classified as defensive players (LP-D) versus offensive players (HP-O). Twenty-nine wheelchair rugby players (17 LP-D and 12 HP-O) performed a 20-m sprint test. The peak velocities, temporal parameters (propulsion phase time, deceleration phase time, cycle time and cycle frequencies) and asymmetries (the difference in peak velocities between the right and the left wheels) were measured at the acceleration and constant peak velocity phases of the sprint by an inertial measurement unit which was placed on each rear wheel. At the acceleration and constant peak velocity phases, peak velocities and cycle frequencies were higher in HP-O players than LP-D players. The deceleration phase times and the cycle times were higher in LP-D players than HP-O players. However, no significant difference in asymmetry was found between LP-D players and HP-O players. The HP-O players showed superior performance than the LP-D players, but they could be more exposed at risk of injury at their upper limbs than LP-D players.
Collapse
Affiliation(s)
| | - Thierry Weissland
- University of Bordeaux, IMS Laboratory, UMR 5218, PMH_DySCo, Pessac, France
| | | | - Didier Pradon
- Pôle Parasport CHU Raymond Poincaré APHP, UMR 1179, Endicap, ISPC Synergies, Hauts-de-Seine 92, Garches, France
| | - Arnaud Faupin
- University of Toulon, IAPS, EA 6312, La Garde, France
| |
Collapse
|
2
|
Rietveld T, Vegter RJK, der Woude LHV, de Groot S. The interaction between wheelchair configuration and wheeling performance in wheelchair tennis: a narrative review. Sports Biomech 2024; 23:370-391. [PMID: 33433269 DOI: 10.1080/14763141.2020.1840617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/18/2020] [Indexed: 10/22/2022]
Abstract
The number of wheelchair tennis players is rising internationally, yet from a scientific perspective little is known about wheelchair tennis performance. Wheelchair tennis is more complex compared to other wheelchair court sports, due to the wheelchair/racket interaction. The purpose of this narrative review was to gain insight into the influence of wheelchair configuration, i.e., the individual set-up of a wheelchair, on wheelchair tennis performance, more specifically on wheelchair mobility performance and propulsion technique. Wheelchair propulsion while holding a racket has had little attention in both the wheelchair mobility performance and wheelchair propulsion technique area. It is shown that the propulsion technique and wheelchair mobility performance are negatively affected by the racket. Based on the current literature, the influence of wheelchair configuration on wheeling performance in wheelchair tennis can mainly be described from a broader wheelchair court sport perspective, due to the lack of specific publications about wheelchair tennis. In the future more research should be conducted on wheeling performance and wheelchair configuration in wheelchair tennis, to attain a more proper scientific foundation for optimising wheelchair tennis performance.
Collapse
Affiliation(s)
- Thomas Rietveld
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
| | - Riemer J K Vegter
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK
| | - Lucas H V der Woude
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK
- Center for Rehabilitation, University Medical Center Groningen, Groningen, The Netherlands
| | - Sonja de Groot
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
- Amsterdam Rehabilitation Research Center Reade, Amsterdam, The Netherlands
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
4
|
Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP, Holdback CJM. Prediction of Propulsion Kinematics and Performance in Wheelchair Rugby. Front Sports Act Living 2022; 4:856934. [PMID: 35873211 PMCID: PMC9301377 DOI: 10.3389/fspor.2022.856934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of propulsion kinematics and performance in wheelchair sports has the potential to improve capabilities of individual wheelchair prescription while minimizing testing requirements. While propulsion predictions have been developed for daily propulsion, these have not been extended for maximal effort in wheelchair sports. A two step-approach to predicting the effects of changing set-up in wheelchair rugby was developed, consisting of: (One) predicting propulsion kinematics during a 5 m sprint by adapting an existing linkage model; and (Two) applying partial least-squares regression to wheelchair set-up, propulsion kinematics, and performance. Eight elite wheelchair rugby players completed 5 m sprints in nine wheelchair set-ups while varying seat height, seat depth, seat angle, and tire pressure. Propulsion kinematics (contact and release angles) and performance (sprint time) were measured during each sprint and used for training and assessment for both models. Results were assessed through comparison of predicted and experimental propulsion kinematics (degree differences) for Step One and performance times (seconds differences) for Step Two. Kinematic measures, in particular contact angles, were identified with mean prediction errors less than 5 degrees for 43 of 48 predictions. Performance predictions were found to reflect on-court trends for some players, while others showed weaker prediction accuracy. More detailed modeling approaches that can account for individual athlete activity limitations would likely result in improved accuracy in propulsion and performance predictions across a range of wheelchair sports. Although this would come at an increased cost, developments would provide opportunities for more suitable set-ups earlier in an athlete's career, increasing performance and reducing injury risk.
Collapse
Affiliation(s)
- David S. Haydon
- South Australian Sports Institute, Kidman Park, SA, Australia
- Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: David S. Haydon
| | - Ross A. Pinder
- Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Paralympic Innovation, Paralympics Australia, Adelaide, SA, Australia
| | - Paul N. Grimshaw
- Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - William S. P. Robertson
- Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Connor J. M. Holdback
- Faculty of Sciences, Engineering, and Technology, University of Adelaide, Adelaide, SA, Australia
- Paralympic Innovation, Paralympics Australia, Adelaide, SA, Australia
| |
Collapse
|
5
|
Fritsch C, Poulet Y, Bascou J, Thoreux P, Sauret C. How Was Studied the Effect of Manual Wheelchair Configuration on Propulsion Biomechanics: A Systematic Review on Methodologies. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:863113. [PMID: 36189035 PMCID: PMC9397681 DOI: 10.3389/fresc.2022.863113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022]
Abstract
Background For both sports and everyday use, finding the optimal manual wheelchair (MWC) configuration can improve a user's propulsion biomechanics. Many studies have already investigated the effect of changes in MWC configuration but comparing their results is challenging due to the differences in experimental methodologies between articles. Purpose The present systematic review aims at offering an in-depth analysis of the methodologies used to study the impact of MWC configuration on propulsion biomechanics, and ultimately providing the community with recommendations for future research. Methods The reviewing process followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart on two databases (Scopus and PubMed) in March 2022. Results Forty-five articles were included, and the results highlighted the multiplicity of methodologies regarding different experimental aspects, including propulsion environment, experimental task, or measurement systems, for example. More importantly, descriptions of MWC configurations and their modifications differed significantly between studies and led to a lack of critical information in many cases. Discussion Studying the effect of MWC configuration on propulsion requires recommendations that must be clarified: (1) the formalism chosen to describe MWC configuration (absolute or relative) should be consistent with the type of study conducted and should be documented enough to allow for switching to the other formalism; (2) the tested MWC characteristics and initial configuration, allowing the reproduction or comparison in future studies, should be properly reported; (3) the bias induced by the experimental situation on the measured data must be considered when drawing conclusions and therefore experimental conditions such as propulsion speed or the effect of the instrumentation should be reported. Conclusion Overall, future studies will need standardization to be able to follow the listed recommendations, both to describe MWC configuration and mechanical properties in a clear way and to choose the experimental conditions best suited to their objectives.
Collapse
Affiliation(s)
- Capucine Fritsch
- Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Paris, France
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC – Institut de Biomécanique Humane Georges Charpak, HESAM Université, 151 Bd de l'Hôpital, Paris, France
| | - Yoann Poulet
- Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Paris, France
| | - Joseph Bascou
- Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Paris, France
| | - Patricia Thoreux
- Hôpital Hôtel-Dieu, AP-HP, Paris, France
- Université Sorbonne Paris Nord, Arts et Métiers Institute of Technology, IBHGC – Institut de Biomécanique Humane Georges Charpak, HESAM Université, 151 Bd de l'Hôpital, Paris, France
| | - Christophe Sauret
- Centre d'Études et de Recherche sur l'Appareillage des Handicapés, Institution Nationale des Invalides, Paris, France
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC – Institut de Biomécanique Humane Georges Charpak, HESAM Université, 151 Bd de l'Hôpital, Paris, France
| |
Collapse
|
6
|
Fletcher JR, Gallinger T, Prince F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports (Basel) 2021; 9:sports9070089. [PMID: 34202455 PMCID: PMC8309899 DOI: 10.3390/sports9070089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023] Open
Abstract
Recent research in Paralympic biomechanics has offered opportunities for coaches, athletes, and sports practitioners to optimize training and performance, and recent systematic reviews have served to summarize the state of the evidence connecting biomechanics to Paralympic performance. This narrative review serves to provide a comprehensive and critical evaluation of the evidence related to biomechanics and Paralympic performance published since 2016. The main themes within this review focus on sport-specific body posture: the standing, sitting, and horizontal positions of current summer Paralympic sports. For standing sports, sprint and jump mechanics were assessed in athletes with cerebral palsy and in lower-limb amputee athletes using running-specific prostheses. Our findings suggest that running and jumping-specific prostheses should be ‘tuned’ to each athlete depending on specific event demands to optimize performance. Standing sports were also inclusive to athletes with visual impairments. Sitting sports comprise of athletes performing on a bike, in a wheelchair (WC), or in a boat. WC configuration is deemed an important consideration for injury prevention, mobility, and performance. Other sitting sports like hand-cycling, rowing, and canoeing/kayaking should focus on specific sitting positions (e.g., arm-crank position, grip, or seat configuration) and ways to reduce aero/hydrodynamic drag. Para-swimming practitioners should consider athlete-specific impairments, including asymmetrical anthropometrics, on the swim-start and free-swim velocities, with special considerations for drag factors. Taken together, we provide practitioners working in Paralympic sport with specific considerations on disability and event-specific training modalities and equipment configurations to optimize performance from a biomechanical perspective.
Collapse
Affiliation(s)
- Jared R. Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB T3E 6K6, Canada
- Correspondence:
| | - Tessa Gallinger
- Canadian Sport Institute Calgary, Calgary, AB T3B 6B7, Canada;
| | - Francois Prince
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Institut National du Sport du Québec, Montréal, QC H1V 3N7, Canada
| |
Collapse
|
7
|
Rum L, Sten O, Vendrame E, Belluscio V, Camomilla V, Vannozzi G, Truppa L, Notarantonio M, Sciarra T, Lazich A, Mannini A, Bergamini E. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. SENSORS 2021; 21:s21051858. [PMID: 33799941 PMCID: PMC7961424 DOI: 10.3390/s21051858] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
The interest and competitiveness in sports for persons with disabilities has increased significantly in the recent years, creating a demand for technological tools supporting practice. Wearable sensors offer non-invasive, portable and overall convenient ways to monitor sports practice. This systematic review aims at providing current evidence on the application of wearable sensors in sports for persons with disability. A search for articles published in English before May 2020 was performed on Scopus, Web-Of-Science, PubMed and EBSCO databases, searching titles, abstracts and keywords with a search string involving terms regarding wearable sensors, sports and disability. After full paper screening, 39 studies were included. Inertial and EMG sensors were the most commonly adopted wearable technologies, while wheelchair sports were the most investigated. Four main target applications of wearable sensors relevant to sports for people with disability were identified and discussed: athlete classification, injury prevention, performance characterization for training optimization and equipment customization. The collected evidence provides an overview on the application of wearable sensors in sports for persons with disability, providing useful indication for researchers, coaches and trainers. Several gaps in the different target applications are highlighted altogether with recommendation on future directions.
Collapse
Affiliation(s)
- Lorenzo Rum
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Oscar Sten
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Eleonora Vendrame
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Valeria Belluscio
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Valentina Camomilla
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| | - Giuseppe Vannozzi
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
- Correspondence: ; Tel.: +39-0636733522
| | - Luigi Truppa
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
| | - Marco Notarantonio
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Aldo Lazich
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy; (M.N.); (T.S.); (A.L.)
| | - Andrea Mannini
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (O.S.); (E.V.); (L.T.); (A.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy
| | - Elena Bergamini
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. De Bosis 6, 00135 Rome, Italy; (L.R.); (V.B.); (V.C.); (E.B.)
| |
Collapse
|
8
|
Criterion Validity of a Field-Based Assessment of Aerobic Capacity in Wheelchair Rugby Athletes. Int J Sports Physiol Perform 2021; 16:1341-1346. [PMID: 33652413 DOI: 10.1123/ijspp.2020-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/24/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To confirm whether peak aerobic capacity determined during laboratory testing could be replicated during an on-court field-based test in wheelchair rugby players. METHODS Sixteen wheelchair rugby players performed an incremental speed-based peak oxygen uptake (V˙O2peak) test on a motorized treadmill (TM) and completed a multistage fitness test (MFT) on a basketball court in a counterbalanced order, while spirometric data were recorded. A paired t test was performed to check for systematic error between tests. A Bland-Altman plot for V˙O2peak illustrated the agreement between the TM and MFT results and how this related to the boundaries of practical equivalence. RESULTS No significant differences between mean V˙O2peak were reported (TM: 1.85 [0.63] vs MFT: 1.81 [0.63] L·min-1; P = .33). Bland-Altman plot for V˙O2peak suggests that the mean values are in good agreement at the group level; that is, the exact 95% confidence limits for the ratio systematic error (0.95-1.02) are within the boundaries of practical equivalence (0.88-1.13) showing that the group average TM and MFT values are interchangeable. However, consideration of the data at the level of the individual athlete suggests that the TM and MFT results were not interchangeable because the 95% ratio limits of agreement either coincide with the boundaries of practical equivalence (upper limit) or fall outside (lower limit). CONCLUSIONS Results suggest that the MFT provides a suitable test at a group level with this cohort of wheelchair rugby players for the assessment of V˙O2peak (range 0.97-3.64 L·min-1), yet caution is noted for interchangeable use of values between tests for individual players.
Collapse
|
9
|
Sousa CV, Nikolaidis PT, Andrade MS, Vancini RL, Andre Barbosa de Lira C, Puccinelli PJG, Knechtle B. Pacing strategy of a wheelchair athlete in a 5x and 10x Ironman ultra triathlon: a case study. Disabil Rehabil Assist Technol 2020; 17:668-674. [PMID: 32809894 DOI: 10.1080/17483107.2020.1807620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE For disabled athletes such as wheelchair athletes, there is no knowledge about competing and pacing during a long-distance triathlon such as an Ironman triathlon. This study aimed to investigate the pacing strategy of a paraplegic wheelchair athlete competing and finishing a Quintuple Iron ultra-triathlon (i.e., five times 3.8 km swimming, 180 km handbike cycling and 42.195 km wheelchair racing in five days) and a Deca Iron ultra-triathlon (10 times the same distance in 10 days). METHODS Data from an ultra-distance triathlon race (Swissultra) covering 5x and 10x Ironman distance were collected. Official performance data were acquired from the race organizer's website and athlete's personal information from the athlete through online interviews. The athlete is a man born in 1962, the races analysed in this study were held in the summer of 2017 (5x) and 2019 (10x). The split times for swimming, cycling and running, the overall race times for each Ironman and the lap times in cycling (handbike) and running (wheelchair) were analysed. RESULTS The athlete finished the Quintuple Iron ultra-triathlon in an overall race time of 66:28:31 h:min:s and the Deca Iron ultra-triathlon in 137:03:20 h:min:s. He adopted an even pacing in both races in split disciplines and for overall race time. CONCLUSION The paraplegic wheelchair athlete was able to finish both a Quintuple and a Deca Iron ultra-triathlon by adopting an even pacing in all split disciplines and for overall race time.IMPLICATIONS FOR REHABILITATIONTriathlon is a growing sport among athletes with spinal cord injury.Ultra-triathlons are ultra-endurance events and pacing is a key aspect to a successful race regardless the athlete's category.An athlete with a spinal cord injury finished a 5x and 10x Ironman ultra-triathlon applying an even pacing strategy.
Collapse
Affiliation(s)
- Caio Victor Sousa
- Health Technology Lab, College of Arts, Media & Design, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | | | | | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espírito Santo, Brazil
| | - Claudio Andre Barbosa de Lira
- Human and Exercise Physiology Division, Faculty of Physical Education and Dance, Federal University of Goiás, Brazil
| | | | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
10
|
van der Slikke RMA, Berger MAM, Bregman DJJ, Veeger DHEJ. Wearable Wheelchair Mobility Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification and Training. SENSORS 2020; 20:s20123518. [PMID: 32575915 PMCID: PMC7349814 DOI: 10.3390/s20123518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
Collapse
Affiliation(s)
- Rienk M. A. van der Slikke
- The Hague University of Applied Sciences, 2501 EH The Hague, The Netherlands;
- Correspondence: ; Tel.: +31-6-18989641
| | | | - Daan J. J. Bregman
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (D.J.J.B.); (D.H.E.J.V.)
| | - Dirkjan H. E. J. Veeger
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (D.J.J.B.); (D.H.E.J.V.)
- Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|