1
|
Tang B, Wang J, Zheng X, Chang J, Ma J, Wang J, Ji X, Yang H, Ding B. Antimicrobial resistance surveillance of Escherichia coli from chickens in the Qinghai Plateau of China. Front Microbiol 2022; 13:885132. [PMID: 35935206 PMCID: PMC9354467 DOI: 10.3389/fmicb.2022.885132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial resistance (AMR) may lead to worldwide epidemics through human activities and natural transmission, posing a global public safety threat. Colistin resistance mediated by the mcr-1 gene is the most prevalent among animal-derived Escherichia coli, and mcr-1-carrying E. coli have been frequently detected in central-eastern China. However, animal-derived E. coli with AMR and the prevalence of mcr-1 in the Qinghai Plateau have been rarely investigated. Herein, 375 stool samples were collected from 13 poultry farms in Qinghai Province and 346 E. coli strains were isolated, of which eight carried mcr-1. The AMR rates of the E. coli strains to ampicillin, amoxicillin/clavulanic acid, and tetracycline were all above 90%, and the resistance rates to ciprofloxacin, cefotaxime, ceftiofur, and florfenicol were above 70%. Multidrug-resistant strains accounted for 95.66% of the total isolates. Twelve E. coli strains showed colistin resistance, from which a total of 46 AMR genes and 36 virulence factors were identified through whole-genome sequencing. The mcr-1 gene resided on the IncHI2, IncI2-type and IncY-type plasmids, and mcr-1 was located in the nikA-nikB-mcr-1-pap2 gene cassette (three strains) or the pap2-mcr-1-ISApl1 structure (one strain). Completed IncI2-type plasmid pMCR4D31–3 sequence (62,259 bp) revealed that it may cause the horizontal transmission of mcr-1 and may increase the risk of its spread through the food chain. Taken together, the AMR of chicken-derived E. coli in the plateau is of concern, suggesting that it is very necessary for us to strengthen the surveillance in various regions under the background of one health.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Biao Tang,
| | - Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Chang
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baoan Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Baoan Ding,
| |
Collapse
|
2
|
Yen HJ, Lin JR, Yeh YH, Horng JL, Lin LY. Exposure to colistin impairs skin keratinocytes and lateral-line hair cells in zebrafish embryos. CHEMOSPHERE 2021; 263:128364. [PMID: 33297279 DOI: 10.1016/j.chemosphere.2020.128364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Environmental contamination by antibiotics has become a global issue. Colistin, a cationic antimicrobial polypeptide, has been widely used in human/veterinary medicine, and growth promotion in aquaculture. However, no study has been conducted to test the toxic effects of colistin on aquatic animals. In this study, we examined the effects of colistin on zebrafish embryos. Zebrafish embryos were incubated in different concentrations (0, 0.01, 0.1, 1, 2, 3, and 10 μM) of colistin for 96 h. Colistin increased the mortality rate in a dose-dependent manner (LC50 was 3.0 μM or 3.5 mg L-1), but it did not change the hatching rate, heart rate, body length, eye size, or yolk size of embryos. However, colistin impaired keratinocytes and lateral-line hair cells in the skin of embryos. Colistin (at concentrations ≥0.1 μM) decreased the number of FM1-43-labeled hair cells and reduced the mechanotransduction-mediated Ca2+ influx at hair bundles, suggesting that sublethal concentrations of colistin can impair lateral line function. To investigate the lethal injury, morphological changes were sequentially observed in post-hatched embryos subjected to lethal concentrations of colistin. We found that skin keratinocytes were severely damaged and detached after exposure, leading to hypotonic swelling of the yolk sac, loss of ion contents, cell lysis, and eventual death. This study revealed that acute colistin exposure can impair skin cells and pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jia-Rou Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|