1
|
Sbragia L, Gualberto IJN, Xia J, Gadde R, Saulsbery A, Hameedi S, Mársico Dalto ALF, Olutoye OO. Intestinal Fatty Acid-Binding Protein as a Marker of Necrotizing Enterocolitis Incidence and Severity: A Scoping Review. J Surg Res 2024; 303:613-627. [PMID: 39437600 DOI: 10.1016/j.jss.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Necrotizing enterocolitis (NEC) is a severe inflammatory disease of the gastrointestinal tract and one of the most common life-threatening emergencies affecting newborns. Intestinal fatty acid-binding protein (I-FABP) has been used as a possible marker of intestinal damage in NEC. We aimed to carry out a scoping review of all publications that explore the role of I-FABP in NEC to inspire new research into the potential utility of I-FABP as a marker of NEC. METHODS We searched for relevant publications using the keywords "necrotizing enterocolitis," "intestinal fatty acid binding protein," "NEC," and "I-FABP" in the National Library of Medicine (PubMed/MEDLINE), Embase, SCOPUS, and Web of Science. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews was used for reporting findings. RESULTS We identified 61 relevant articles, which we divided into clinical (n = 47) and experimental (n = 14) groups. CONCLUSIONS I-FABP is a promising marker of NEC, especially for NEC stage 2 and 3. Urinary I-FABP follows the same patterns as serum and plasma I-FABP. The definitive roles of I-FABP in early diagnosis of NEC, differential diagnosis in breast feeding, alimentary intolerance, and screening of surgical NEC need clarification and remain a challenge to investigators.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil; Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Igor José Nogueira Gualberto
- Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil
| | - Jason Xia
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Rahul Gadde
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Angela Saulsbery
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sophia Hameedi
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ana Laura Ferreira Mársico Dalto
- Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil
| | - Oluyinka O Olutoye
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, Division of Pediatric Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
2
|
Fan Z, Jia W. Lactobacillus casei-Derived Postbiotics Elevate the Bioaccessibility of Proteins via Allosteric Regulation of Pepsin and Trypsin and Introduction of Endopeptidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37410960 DOI: 10.1021/acs.jafc.3c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The potential of probiotics to benefit digestion has been widely reported, while its utilization in high-risk patients and potential adverse reactions have focused interest on postbiotics. A variable data-independent acquisition (vDIA)-based spatial-omics strategy integrated with unsupervised variational autoencoders was applied to profile the functional mechanism underlying the action of Lactobacillus casei-derived postbiotic supplementation in goat milk digestion in an infant digestive system, from a metabolomics-peptidomics-proteomics perspective. Amide and olefin derivatives were proved to elevate the activities of pepsin and trypsin through hydrogen bonding and hydrophobic forces based on allosteric effects, and recognition of nine endopeptidases and their cleavage to serine, proline, and aspartate were introduced by postbiotics, thereby promoting the generation of hydrophilic peptides and elevating the bioaccessibility of goat milk protein. The peptides originating from αs1-casein, β-casein, β-lactoglobulin, Ig-like domain-containing protein, κ-casein, and serum amyloid A protein, with multiple bioactivities including angiotensin I-converting enzyme (ACE)-inhibitory, osteoanabolic, dipeptidyl peptidase IV (DPP-IV) inhibitory, antimicrobial, bradykinin-potentiating, antioxidant, and anti-inflammatory activities, were significantly increased in the postbiotic supplementation group, which was also considered to potentially prevent necrotizing enterocolitis through inhibiting the multiplication of pathogenic bacteria and blocking signal transducer and activator of transcription 1 and nuclear factor kappa-light-chain-enhancer of activated B cells inflammatory pathways. This research deepened the understanding of the mechanism underlying the postbiotics affecting goat milk digestion, which established a critical groundwork for the clinical application of postbiotics in infant complementary foods.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Feng Z, Jia C, Lin X, Hao H, Li S, Li F, Cui Q, Chen Y, Wu F, Xiao X. The inhibition of enterocyte proliferation by lithocholic acid exacerbates necrotizing enterocolitis through downregulating the Wnt/β-catenin signalling pathway. Cell Prolif 2022; 55:e13228. [PMID: 35441471 PMCID: PMC9136529 DOI: 10.1111/cpr.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Necrotizing enterocolitis (NEC) is a catastrophic gastrointestinal emergency in preterm infants, whose exact aetiology remains unknown. The role of lithocholic acid (LCA), a key component of secondary bile acids (BAs), in NEC is unclear. Methods Clinical data were collected to analyse the changes of BAs in NEC patients. In vitro studies, the cell proliferation and cell death were assessed. In vivo experiments, the newborn rats were administered with low or high dose of LCA and further induced NEC. Results Clinically, compared with control group, total BAs in the NEC patients were significantly higher when NEC occurred. In vitro, LCA treatment significantly inhibited the cell proliferation through arresting cell cycle at G1/S phase without inducing apoptosis or necroptosis. Mechanistically, the Wnt/β‐catenin pathway was involved. In vivo, LCA inhibited intestinal cell proliferation leading to disruption of intestinal barrier, and thereby increased the severity of NEC. Specifically, LCA supplementation caused higher levels of FITC‐labelled dextran in serum, reduced PCNA expression and inhibited the activity of Wnt/β‐catenin pathway in enterocytes. The LC–MS/MS test found that LCA was significantly higher in intestinal tissue of NEC group, and more obviously in the NEC‐L and NEC‐H group compared with the DM group. Conclusion LCA exacerbates NEC by inhibiting intestinal cell proliferation through downregulating the Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Zhoushan Feng
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaojun Lin
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Fei Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Qiliang Cui
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| |
Collapse
|
4
|
de Jong JCW, Ijssennagger N, van Mil SWC. Breast milk nutrients driving intestinal epithelial layer maturation via Wnt and Notch signaling: Implications for necrotizing enterocolitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166229. [PMID: 34329708 DOI: 10.1016/j.bbadis.2021.166229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is an often lethal, inflammatory disease of the preterm intestine. The underdeveloped immune system plays an important role; however, the initial trigger for NEC development is likely a damaged intestinal epithelial layer. We hypothesize that due to incomplete maturation of different epithelial cell lineages, nutrients and bacteria are able to damage the epithelial cells and cause the (immature) inflammatory response, food intolerance and malabsorption seen in NEC. Intestinal organoid research has shown that maturation of intestinal epithelial cell lineages is orchestrated by two key signaling pathways: Wnt and Notch. In NEC, these pathways are dysregulated by hyperactivation of Toll-like-receptor-4. Breastfeeding decreases the risk of developing NEC compared to formula milk. Here, we review the intricate link between breast milk components, Wnt and Notch signaling and intestinal epithelial maturation. We argue that (nutritional) interventions regulating these pathways may decrease the risk of NEC development in preterm infants.
Collapse
Affiliation(s)
- Judith C W de Jong
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands
| | | | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands.
| |
Collapse
|