1
|
Orton LM, Barberá P, Nissenbaum MP, Peterson PM, Quintanar A, Soreng RJ, Duvall MR. A 313 plastome phylogenomic analysis of Pooideae: Exploring relationships among the largest subfamily of grasses. Mol Phylogenet Evol 2021; 159:107110. [PMID: 33609709 DOI: 10.1016/j.ympev.2021.107110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
In this study, we analyzed 313 plastid genomes (plastomes) of Poaceae with a focus on expanding our current knowledge of relationships among the subfamily Pooideae, which represented over half the dataset (164 representatives). In total, 47 plastomes were sequenced and assembled for this study. This is the largest study of its kind to include plastome-level data, to not only increase sampling at both the taxonomic and molecular levels with the aim of resolving complex and reticulate relationships, but also to analyze the effects of alignment gaps in large-scale analyses, as well as explore divergences in the subfamily with an expanded set of 14 accepted grass fossils for more accurate calibrations and dating. Incorporating broad systematic assessments of Pooideae taxa conducted by authors within the last five years, we produced a robust phylogenomic reconstruction for the subfamily, which included all but two supergeneric taxa (Calothecinae and Duthieeae). We further explored how including alignment gaps in plastome analyses oftentimes can produce incorrect or misinterpretations of complex or reticulate relationships among taxa of Pooideae. This presented itself as consistently changing relationships at specific nodes for different stripping thresholds (percentage-based removal of gaps per alignment column). Our summary recommendation for large-scale genomic plastome datasets is to strip alignment columns of all gaps to increase pairwise identity and reduce errant signal from poly A/T bias. To do this we used the "mask alignment" tool in Geneious software. Finally, we determined an overall divergence age for Pooideae of roughly 84.8 Mya, which is in line with, but slightly older than most recent estimates.
Collapse
Affiliation(s)
- Lauren M Orton
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA.
| | - Patricia Barberá
- Department of Africa and Madagascar, Missouri Botanical Garden, St. Louis, MO 63110, USA
| | - Matthew P Nissenbaum
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Paul M Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC 20013-7012, USA
| | - Alejandro Quintanar
- Herbario MA, Unidad de Herbarios, Real Jardín Botánico de Madrid CSIC, 28014 Madrid, Spain
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC 20013-7012, USA
| | - Melvin R Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA; Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|
2
|
Tkach N, Nobis M, Schneider J, Becher H, Winterfeld G, Jacobs SWL, Röser M. Molecular Phylogenetics and Micromorphology of Australasian Stipeae (Poaceae, Subfamily Pooideae), and the Interrelation of Whole-Genome Duplication and Evolutionary Radiations in This Grass Tribe. FRONTIERS IN PLANT SCIENCE 2021; 11:630788. [PMID: 33552114 PMCID: PMC7862344 DOI: 10.3389/fpls.2020.630788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The mainly Australian grass genus Austrostipa (tribe Stipeae) comprising approximately 64 species represents a remarkable example of an evolutionary radiation. To investigate aspects of diversification, macro- and micromorphological variation in this genus, we conducted molecular phylogenetic and scanning electron microscopy (SEM) analyses including representatives from most of Austrostipa's currently accepted subgenera. Because of its taxonomic significance in Stipeae, we studied the lemma epidermal pattern (LEP) in 34 representatives of Austrostipa. Plastid DNA variation within Austrostipa was low and only few lineages were resolved. Nuclear ITS and Acc1 yielded comparable groupings of taxa and resolved subgenera Arbuscula, Petaurista, and Bambusina in a common clade and as monophyletic. In most of the Austrostipa species studied, the LEP was relatively uniform (typical maize-like), but six species had a modified cellular structure. The species representing subgenera Lobatae, Petaurista, Bambusina as well as A. muelleri from subg. Tuberculatae were well-separated from all the other species included in the analysis. We suggest recognizing nine subgenera in Austrostipa (with number of species): Arbuscula (4), Aulax (2), Austrostipa (36), Bambusina (2), Falcatae (10), Lobatae (5), Longiaristatae (2), Petaurista (2) and the new subgenus Paucispiculatae (1) encompassing A. muelleri. Two paralogous sequence copies of Acc1, forming two distinct clades, were found in polyploid Austrostipa and Anemanthele. We found analogous patterns for our samples of Stipa s.str. with their Acc1 clades strongly separated from those of Austrostipa and Anemanthele. This underlines a previous hypothesis of Tzvelev (1977) that most extant Stipeae are of hybrid origin. We also prepared an up-to-date survey and reviewed the chromosome number variation for our molecularly studied taxa and the whole tribe Stipeae. The chromosome base number patterns as well as dysploidy and whole-genome duplication events were interpreted in a phylogenetic framework. The rather coherent picture of chromosome number variation underlines the enormous phylogenetic and evolutionary significance of this frequently ignored character.
Collapse
Affiliation(s)
- Natalia Tkach
- Department of Systematic Botany, Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Julia Schneider
- Department of Systematic Botany, Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | - Hannes Becher
- Department of Systematic Botany, Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Grit Winterfeld
- Department of Systematic Botany, Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | | | - Martin Röser
- Department of Systematic Botany, Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| |
Collapse
|
3
|
Diehn S, Zimmermann B, Tafintseva V, Bağcıoğlu M, Kohler A, Ohlson M, Fjellheim S, Kneipp J. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains. Anal Bioanal Chem 2020; 412:6459-6474. [PMID: 32350580 PMCID: PMC7442581 DOI: 10.1007/s00216-020-02628-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Fourier-transform infrared (FTIR) spectroscopy enables the chemical characterization and identification of pollen samples, leading to a wide range of applications, such as paleoecology and allergology. This is of particular interest in the identification of grass (Poaceae) species since they have pollen grains of very similar morphology. Unfortunately, the correct identification of FTIR microspectroscopy spectra of single pollen grains is hindered by strong spectral contributions from Mie scattering. Embedding of pollen samples in paraffin helps to retrieve infrared spectra without scattering artifacts. In this study, pollen samples from 10 different populations of five grass species (Anthoxanthum odoratum, Bromus inermis, Hordeum bulbosum, Lolium perenne, and Poa alpina) were embedded in paraffin, and their single grain spectra were obtained by FTIR microspectroscopy. Spectra were subjected to different preprocessing in order to suppress paraffin influence on spectral classification. It is shown that decomposition by non-negative matrix factorization (NMF) and extended multiplicative signal correction (EMSC) that utilizes a paraffin constituent spectrum, respectively, leads to good success rates for the classification of spectra with respect to species by a partial least square discriminant analysis (PLS-DA) model in full cross-validation for several species. PLS-DA, artificial neural network, and random forest classifiers were applied on the EMSC-corrected spectra using an independent validation to assign spectra from unknown populations to the species. Variation within and between species, together with the differences in classification results, is in agreement with the systematics within the Poaceae family. The results illustrate the great potential of FTIR microspectroscopy for automated classification and identification of grass pollen, possibly together with other, complementary methods for single pollen chemical characterization.
Collapse
Affiliation(s)
- Sabrina Diehn
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Murat Bağcıoğlu
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Mikael Ohlson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
4
|
Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated cereals worldwide, holding significant agricultural, historical, and evolutionary importance. However, our genomic knowledge of it is rather limited at present, hampering further genetic and evolutionary studies. Here, we sequenced and assembled the chloroplast genome (cp) of broomcorn millet and compared it with five other Panicoideae species. Results showed that the cp genome of broomcorn millet was 139,826 bp in size, with a typical quadripartite structure. In total, 108 genes were annotated and 18 genes were duplicated in the IR (inverted region) region, which was similar to other Panicoideae species. Comparative analysis showed a rather conserved genome structure between them, with three common regions. Furthermore, RNA editing, codon usage, and expansion of the IR, as well as simple sequence repeat (SSR) elements, were systematically investigated and 13 potential DNA markers were developed for Panicoideae species identification. Finally, phylogenetic analysis implied that broomcorn millet was a sister species to Panicum virgatum within the tribe Paniceae, and supported a monophyly of the Panicoideae. This study has reported for the first time the genome organization, gene content, and structural features of the chloroplast genome of broomcorn millet, which provides valuable information for genetic and evolutionary studies in the genus Panicum and beyond.
Collapse
|
5
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
6
|
Hochbach A, Schneider J, Röser M. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA. Mol Phylogenet Evol 2015; 87:14-27. [DOI: 10.1016/j.ympev.2015.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 01/18/2023]
|
7
|
Wölk A, Winterfeld G, Röser M. Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics ofHelictotrichon(Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. SYST BIODIVERS 2015. [DOI: 10.1080/14772000.2015.1023867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield DR, Duvall MR. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AOB PLANTS 2015; 7:plv046. [PMID: 25940204 PMCID: PMC4480051 DOI: 10.1093/aobpla/plv046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Collapse
Affiliation(s)
- Jeffery M Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, PO Box 3443 Stn. D, Ottawa, ON, Canada K1P 3P4
| | - William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Craig F Barrett
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA 90032-8201, USA
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jerrold I Davis
- Section of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Dustin R Mayfield
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|