1
|
Primov KD, Burdick DR, Lemer S, Forsman ZH, Combosch DJ. Genomic data reveals habitat partitioning in massive Porites on Guam, Micronesia. Sci Rep 2024; 14:17107. [PMID: 39048606 PMCID: PMC11269739 DOI: 10.1038/s41598-024-67992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Corals in marginal reef habitats generally exhibit less bleaching and associated mortality compared to nearby corals in more pristine reef environments. It is unclear, however, if these differences are due to environmental differences, including turbidity, or genomic differences between the coral hosts in these different environments. One particularly interesting case is in the coral genus Porites, which contains numerous morphologically similar massive Porites species inhabiting a wide range of reef habitats, from turbid river deltas and stagnant back reefs to high-energy fore reefs. Here, we generate ddRAD data for 172 Porites corals from river delta and adjacent (<0.5 km) fore reef populations on Guam to assess the extent of genetic differentiation among massive Porites corals in these two contrasting environments and throughout the island. Phylogenetic and population genomic analyses consistently identify seven different clades of massive Porites, with the two largest clades predominantly inhabiting either river deltas or fore reefs, respectively. No population structure was detected in the two largest clades, and Cladocopium was the dominant symbiont genus in all clades and environments. The perceived bleaching resilience of corals in marginal reefs may therefore be attributed to interspecific differences between morphologically similar species, in addition to potentially mediating environmental differences. Marginal reef environments may therefore not provide a suitable refuge for many reef corals in a heating world, but instead host additional cryptic coral diversity.
Collapse
Affiliation(s)
- Karim D Primov
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - David R Burdick
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Zac H Forsman
- King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| | - David J Combosch
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| |
Collapse
|
2
|
Addamo AM, Modrell MS, Taviani M, Machordom A. Unravelling the relationships among Madrepora Linnaeus, 1758, Oculina Lamark, 1816 and Cladocora Ehrenberg, 1834 (Cnidaria: Anthozoa: Scleractinia). INVERTEBR SYST 2024; 38:IS23027. [PMID: 38744497 DOI: 10.1071/is23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
Despite the widespread use of integrative taxonomic approaches, many scleractinian coral genera and species remain grouped in polyphyletic families, classified as incertae sedis or simply understudied. Oculinidae Gray, 1847 represents a family for which many taxonomic questions remain unresolved, particularly those related to some of the current genera, such as Oculina Lamark, 1816 or recently removed genera, including Cladocora Ehrenberg, 1834 and Madrepora Linnaeus, 1758. Cladocora is currently assigned to the family Cladocoridae Milne Edwards & Haime, 1857 and a new family, Bathyporidae Kitahara, Capel, Zilberberg & Cairns, 2024, was recently raised to accommodate Madrepora . However, the name Bathyporidae is not valid because this was not formed on the basis of a type genus name. To resolve taxonomic questions related to these three genera, the evolutionary relationships are explored through phylogenetic analyses of 18 molecular markers. The results of these analyses support a close relationship between the species Oculina patagonica and Cladocora caespitosa , indicating that these may belong to the same family (and possibly genus), and highlighting the need for detailed revisions of Oculina and Cladocora . By contrast, a distant relationship is found between these two species and Madrepora oculata , with the overall evidence supporting the placement of Madrepora in the resurrected family Madreporidae Ehrenberg, 1834. This study advances our knowledge of coral systematics and highlights the need for a comprehensive review of the genera Oculina , Cladocora and Madrepora .
Collapse
Affiliation(s)
- Anna M Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain; and European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy; and Climate Change Research Centre (CCRC), University of Insubria, I-21100 Varese, Italy; and Present address: Faculty of Biosciences and Aquaculture, Nord University, NO-8049 Bodø, Norway
| | - Melinda S Modrell
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| | - Marco Taviani
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), I-40129 Bologna, Italy; and Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| |
Collapse
|
3
|
Vicario S, Terraneo TI, Chimienti G, Maggioni D, Marchese F, Purkis SJ, Eweida AA, Rodrigue M, Benzoni F. Molecular diversity of black corals from the Saudi Arabian Red Sea: a first assessment. INVERTEBR SYST 2024; 38:IS23041. [PMID: 38744524 DOI: 10.1071/is23041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/12/2024] [Indexed: 05/16/2024]
Abstract
Black corals occur as part of benthic assemblages from shallow to deep waters in all oceans. Despite the importance in many benthic ecosystems, where these act as biodiversity aggregators, antipatharians remain poorly studied, with 75% of the known species occurring below recreational SCUBA diving depth limits. Currently, information regarding the diversity and evolutionary history is limited, with most studies focusing on Hawaii and the South Pacific Ocean. Other regions of the world have received less attention, such as the Red Sea, where only two black coral families and four genera have been recorded. We provide the first analysis of the molecular diversity of black corals in the eastern Gulf of Aqaba and the northern and central Saudi Arabian Red Sea, based on a dataset of 161 antipatharian colonies collected down to 627 m deep. Based on specimen morphology, we ascribed our material to 11 genera belonging to 4 of the 7 known Antipatharia families, i.e. Antipathidae, Aphanipathidae, Myriopathidae and Schizopathidae. The genus level phylogeny of three intergenic mitochondrial regions, the trnW-IGR-nad2 (IgrW ), nad5-IGR-nad1 (IgrN ) and cox3-IGR-cox1 was reconstructed including previously published material. Overall, we recovered six molecular clades that included exclusively Red Sea sequences, with the highest diversity occurring at mesophotic depths. This study highlights that diversity of black corals in the Red Sea is much higher than previously known, with seven new generic records, suggesting that this basin may be a hotspot for antipatharian diversity as is known for other taxa. Our results recovered unresolved relationships within the order at the familial and generic levels. This emphasises the urgent need for an integration of genomic-wide data with a re-examination of informative morphological features necessary to revise the systematics of the order at all taxonomic levels.
Collapse
Affiliation(s)
- Silvia Vicario
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; and Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Tullia Isotta Terraneo
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Giovanni Chimienti
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia; and Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Davide Maggioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; and Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo, Maldives
| | - Fabio Marchese
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Sam J Purkis
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA; and Khaled bin Sultan Living Oceans Foundation, Annapolis, USA
| | | | | | - Francesca Benzoni
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; and Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
4
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
5
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
Abstract
The Stylasteridae, commonly known as lace corals, is a family of colonial calcifying hydrozoans mostly inhabiting deep waters. Stylasterids show a cosmopolitan distribution but, in some areas, they are characterized by low species diversity, such as in the Red Sea, where only a shallow-water species has been reported so far. With this work, we provide the first evidence of a deep-sea stylasterid inhabiting the NEOM region in the northern Saudi Arabian Red Sea, at depths ranging between 166 and 492 m. Morphological examinations revealed that this species was previously unknown and belonging to the genus Stylaster. We, therefore, describe Stylaster tritoni sp. nov., representing the first record of the genus in the Red Sea. Lastly, the phylogenetic position of the species within the Stylasteridae was evaluated, revealing a close relationship with shallow-water Indo-Pacific and Western Atlantic Stylaster species and confirming the polyphyletic nature of the genus Stylaster.
Collapse
|
7
|
Terraneo TI, Benzoni F, Arrigoni R, Baird AH, Mariappan KG, Forsman ZH, Wooster MK, Bouwmeester J, Marshell A, Berumen ML. Phylogenomics of Porites from the Arabian Peninsula. Mol Phylogenet Evol 2021; 161:107173. [PMID: 33813021 DOI: 10.1016/j.ympev.2021.107173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia.
| | - Francesca Benzoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; European Commission, Joint Research Centre (JRC), Ispra, Italy; Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia
| | - Kiruthiga G Mariappan
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zac H Forsman
- Hawaii Institute of Marine Biology, Kaneohe 96744, HI, USA
| | - Michael K Wooster
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Michael L Berumen
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Arrigoni R, Huang D, Berumen ML, Budd AF, Montano S, Richards ZT, Terraneo TI, Benzoni F. Integrative systematics of the scleractinian coral genera
Caulastraea
,
Erythrastrea
and
Oulophyllia. ZOOL SCR 2021. [DOI: 10.1111/zsc.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica Anton Dohrn Napoli Italy
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore Singapore Singapore
| | - Michael L. Berumen
- Reef Ecology Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Ann F. Budd
- Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano − Bicocca Milano Italy
- Marine Research and High Education Center Magoodhoo Island Faafu Atoll Maldives
| | - Zoe T. Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Tullia I. Terraneo
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Francesca Benzoni
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
9
|
Bonito VE, Baird AH, Bridge T, Cowman PF, Fenner D. Types, topotypes and vouchers are the key to progress in coral taxonomy: Comment on Wepfer et al. (2020). Mol Phylogenet Evol 2021; 159:107104. [PMID: 33609706 DOI: 10.1016/j.ympev.2021.107104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Victor E Bonito
- Coral Coast Conservation Center, Votua Village, Baravi, Nadroga, Fiji.
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Tom Bridge
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Douglas Fenner
- NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, HI 96817, USA
| |
Collapse
|
10
|
Mitsuki Y, Isomura N, Nozawa Y, Tachikawa H, Huang D, Fukami H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). INVERTEBR SYST 2021. [DOI: 10.1071/is21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.
Collapse
|
11
|
DeCarlo TM. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ 2020; 8:e10200. [PMID: 33150088 PMCID: PMC7587059 DOI: 10.7717/peerj.10200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/26/2020] [Indexed: 11/20/2022] Open
Abstract
Accurate knowledge of the spatial and temporal patterns of coral bleaching is essential both for understanding how coral reef ecosystems are changing today and forecasting their future states. Yet, in many regions of the world, the history of bleaching is poorly known, especially prior to the late 20th century. Here, I use the information preserved within skeleton cores of long-lived Porites corals to reconstruct the past century of bleaching events in the Saudi Arabian central Red Sea. In these cores, skeletal "stress bands"-indicative of past bleaching-captured known bleaching events that occurred in 1998 and 2010, but also revealed evidence of previously unknown bleaching events in 1931, 1978, and 1982. However, these earlier events affected a significantly lesser proportion of corals than 1998 and 2010. Therefore, coral bleaching may have occurred in the central Red Sea earlier than previously recognized, but the frequency and severity of bleaching events since 1998 on nearshore reefs is unprecedented over the past century. Conversely, corals living on mid- to outer-shelf reefs have not been equally susceptible to bleaching as their nearshore counterparts, which was evident in that stress bands were five times more prevalent nearshore. Whether this pattern of susceptible nearshore reefs and resistant outer-shelf reefs continues in the future remains a key question in forecasting coral reef futures in this region.
Collapse
Affiliation(s)
- Thomas M DeCarlo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,College of Natural and Computational Sciences, Hawaii Pacific University, Honolulu, HI, United States of America
| |
Collapse
|
12
|
DeCarlo TM, Gajdzik L, Ellis J, Coker DJ, Roberts MB, Hammerman NM, Pandolfi JM, Monroe AA, Berumen ML. Nutrient-supplying ocean currents modulate coral bleaching susceptibility. SCIENCE ADVANCES 2020; 6:6/34/eabc5493. [PMID: 32937375 PMCID: PMC7442482 DOI: 10.1126/sciadv.abc5493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 05/19/2023]
Abstract
With predictions that mass coral bleaching will occur annually within this century, conservation efforts must focus their limited resources based on an accurate understanding of the drivers of bleaching. Here, we provide spatial and temporal evidence that excess nutrients exacerbate the detrimental effects of heat stress to spark mass coral bleaching in the Red Sea. Exploiting this region's unique oceanographic regime, where nutrients and heat stress vary independently, we demonstrate that the world's third largest coral reef system historically suffered from severe mass bleaching only when exposed to both unusually high temperature and nutrients. Incorporating nutrient-supplying ocean currents and their variability into coral bleaching forecasts will be critical for effectively guiding efforts to safeguard the reefs most likely to persist in the Anthropocene.
Collapse
Affiliation(s)
- Thomas M DeCarlo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Laura Gajdzik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Joanne Ellis
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Darren J Coker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May B Roberts
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Nicholas M Hammerman
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alison A Monroe
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|