1
|
Scuoppo R, Castelbuono S, Cannata S, Gentile G, Agnese V, Bellavia D, Gandolfo C, Pasta S. Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis. Med Biol Eng Comput 2024:10.1007/s11517-024-03215-8. [PMID: 39388030 DOI: 10.1007/s11517-024-03215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in developing in silico trials for assessing the safety and efficacy of cardiovascular devices, focusing on bioprostheses designed for transcatheter aortic valve implantation (TAVI). METHODS A statistical shape model (SSM) was employed to extract uncorrelated shape features from TAVI patients, enabling the augmentation of the original patient population into a clinically validated synthetic cohort. Machine learning techniques were utilized not only for risk stratification and classification but also for predicting the physiological variability within the original patient population. RESULTS By randomly varying the statistical shape modes within a range of ± 2σ, a hundred virtual patients were generated, forming the synthetic cohort. Validation against the original patient population was conducted using morphological measurements. Support vector machine regression, based on selected shape modes (principal component scores), effectively predicted the peak pressure gradient across the stenosis (R-squared of 0.551 and RMSE of 11.67 mmHg). Multilayer perceptron neural network accurately predicted the optimal device size for implantation with high sensitivity and specificity (AUC = 0.98). CONCLUSION The study highlights the potential of integrating computational predictions, advanced machine learning techniques, and synthetic data generation to improve predictive accuracy and assess TAVI-related outcomes through in silico trials.
Collapse
Affiliation(s)
- Roberta Scuoppo
- Department of Engineering, Università degli Studi di Palermo, Viale Delle Scienze Ed.8, Palermo, Italy
| | | | - Stefano Cannata
- Interventional Cardiology Unit, IRCCS ISMETT, via Tricomi, 5, Palermo, Italy
| | - Giovanni Gentile
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT, Via Tricomi, 5, Palermo, Italy
| | - Valentina Agnese
- Department of Research, IRCCS ISMETT, via Tricomi, 5, Palermo, Italy
| | - Diego Bellavia
- Department of Research, IRCCS ISMETT, via Tricomi, 5, Palermo, Italy
| | - Caterina Gandolfo
- Interventional Cardiology Unit, IRCCS ISMETT, via Tricomi, 5, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, Università degli Studi di Palermo, Viale Delle Scienze Ed.8, Palermo, Italy.
- Department of Research, IRCCS ISMETT, via Tricomi, 5, Palermo, Italy.
| |
Collapse
|
2
|
Grossi B, Barati S, Ramella A, Migliavacca F, Rodriguez Matas JF, Dubini G, Chakfé N, Heim F, Cozzi O, Condorelli G, Stefanini GG, Luraghi G. Validation evidence with experimental and clinical data to establish credibility of TAVI patient-specific simulations. Comput Biol Med 2024; 182:109159. [PMID: 39303394 DOI: 10.1016/j.compbiomed.2024.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The objective of this study is to validate a novel workflow for implementing patient-specific finite element (FE) simulations to virtually replicate the Transcatheter Aortic Valve Implantation (TAVI) procedure. METHODS Seven patients undergoing TAVI were enrolled. Patient-specific anatomical models were reconstructed from pre-operative computed tomography (CT) scans and subsequentially discretized, considering the native aortic leaflets and calcifications. Moreover, high-fidelity models of CoreValve Evolut R and Acurate Neo2 valves were built. To determine the most suitable material properties for the two stents, an accurate calibration process was undertaken. This involved conducting crimping simulations and fine-tuning Nitinol parameters to fit experimental force-diameter curves. Subsequently, FE simulations of TAVI procedures were conducted. To validate the reliability of the implemented implantation simulations, qualitative and quantitative comparisons with post-operative clinical data, such as angiographies and CT scans, were performed. RESULTS For both devices, the simulation curves closely matched the experimental data, indicating successful validation of the valves mechanical behaviour. An accurate qualitative superimposition with both angiographies and CTs was evident, proving the reliability of the simulated implantation. Furthermore, a mean percentage difference of 1,79 ± 0,93 % and 3,67 ± 2,73 % between the simulated and segmented final configurations of the stents was calculated in terms of orifice area and eccentricity, respectively. CONCLUSION This study shows the successful validation of TAVI simulations in patient-specific anatomies, offering a valuable tool to optimize patients care through personalized pre-operative planning. A systematic approach for the validation is presented, laying the groundwork for enhanced predictive modeling in clinical practice.
Collapse
Affiliation(s)
- Benedetta Grossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Sara Barati
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Anna Ramella
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Francesco Migliavacca
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Nabil Chakfé
- Department of Vascular Surgery, Kidney Transplantation and Innovation, University Hospital of Strasbourg, Strasbourg, France; GEPROMED, Strasbourg, France
| | - Frédéric Heim
- GEPROMED, Strasbourg, France; Laboratoire de Physique et Mecanique des Textiles, Universite' de Haute-Alsace, Mulhouse, France
| | - Ottavia Cozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Luraghi
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
3
|
Shah I, Samaee M, Razavi A, Esmailie F, Ballarin F, Dasi LP, Veneziani A. Reduced Order Modeling for Real-Time Stent Deformation Simulations of Transcatheter Aortic Valve Prostheses. Ann Biomed Eng 2024; 52:208-225. [PMID: 37962675 DOI: 10.1007/s10439-023-03360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023]
Abstract
Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.
Collapse
Affiliation(s)
- Imran Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - Milad Samaee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Atefeh Razavi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Fateme Esmailie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Francesco Ballarin
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, 48 Via Della Garzetta, 25133, Brescia, Italy
| | - Lakshmi P Dasi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Technology Circle, Atlanta, GA, 30313, USA.
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.
- Department of Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Karakoç A, Aksoy O, Taciroğlu E. Effects of leaflet curvature and thickness on the crimping stresses in transcatheter heart valve. J Biomech 2023; 156:111663. [PMID: 37295168 DOI: 10.1016/j.jbiomech.2023.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
With the current advances and expertise in biomedical device technologies, transcatheter heart valves (THVs) have been drawing significant attention. Various studies have been carried out on their durability and damage by dynamic loading in operational conditions. However, very few numerical investigations have been conducted to understand the effects of leaflet curvature and thickness on the crimping stresses which arise during the surgical preparation processes. In order to contribute to the current state of the art, a full heart valve model was presented, the leaflet curvature and thickness of which were then parameterized so as to understand the stress generation as a result of the crimping procedure during the surgical preparations. The results show that the existence of stresses is inevitable during the crimping procedure, which is a reduction factor for valve durability. Especially, stresses on the leaflets at the suture sites connected with the skirt were deduced to be critical and may result in leaflet ruptures after THV implantation.
Collapse
Affiliation(s)
- Alp Karakoç
- Aalto University, Department of Communications and Networking, 02150, Finland; Department of Civil and Environmental Engineering, University of California, Los Angeles, 90095, USA.
| | - Olcay Aksoy
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, 90095, USA
| | - Ertuğrul Taciroğlu
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 90095, USA
| |
Collapse
|
5
|
Liu X, Zhang W, Ye P, Luo Q, Chang Z. Fluid-Structure Interaction Analysis on the Influence of the Aortic Valve Stent Leaflet Structure in Hemodynamics. Front Physiol 2022; 13:904453. [PMID: 35634139 PMCID: PMC9136298 DOI: 10.3389/fphys.2022.904453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive surgical treatment for heart valve disease. At present, personalized TAVR valves are not available for some patients. This study adopts the fluid-structure interaction (FSI) model of the research object that has a three-disc leaflet form and structural design in the valve leaflet area. The valve opening shape, orifice area, stress-strain, and distribution of hemodynamic flow and pressure were compared under the condition of equal contact area between valve and blood. The FSI method was used to simulate the complex three dimensional characteristics of the flow field more accurately around the valve after TAVR stent implantation. Three personalized stent systems were established to study the performance of the leaflet design based on computational fluid dynamics. By comparing the different leaflet geometries, the maximum stress on leaflets and stents of model B was relatively reduced, which effectively improved the reliability of the stent design. Such valve design also causes the opening area of the valve leaflet to increase and the low-velocity area of the flow field to decrease during the working process of the valve, thus reducing the possibility of thrombosis. These findings can underpin breakthroughs in product design, and provide important theoretical support and technical guidance for clinical research.
Collapse
|
6
|
On the Modeling of Transcatheter Therapies for the Aortic and Mitral Valves: A Review. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) has become a milestone for the management of aortic stenosis in a growing number of patients who are unfavorable candidates for surgery. With the new generation of transcatheter heart valves (THV), the feasibility of transcatheter mitral valve replacement (TMVR) for degenerated mitral bioprostheses and failed annuloplasty rings has been demonstrated. In this setting, computational simulations are modernizing the preoperative planning of transcatheter heart valve interventions by predicting the outcome of the bioprosthesis interaction with the human host in a patient-specific fashion. However, computational modeling needs to carry out increasingly challenging levels including the verification and validation to obtain accurate and realistic predictions. This review aims to provide an overall assessment of the recent advances in computational modeling for TAVR and TMVR as well as gaps in the knowledge limiting model credibility and reliability.
Collapse
|
7
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|