1
|
Zhang H, Liu J, Yao J, He F, Ying X. Two novel ketone alkaloids from Portulaca oleraceaL. and their anti-inflammatory activities. Nat Prod Res 2024:1-8. [PMID: 38472190 DOI: 10.1080/14786419.2024.2325593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Eleven compounds were obtained from Portulaca oleracea L., including two novel ketone alkaloids, (1, 2), 4-hydroxy-3-methoxybenzamide (3) (isolated for the first time), β-adenosine (4), oleracrylimide A and B (5, 6), oleracein H, C, D, Q and A (7-11). The two novel ketone alkaloids were identified as 5-acetyl-5-methylcyclopent-2-ene-1-carboxamide (1), named oleraciamide H, and (2 R,3S,4R,5R)-5-((R)-1,2-dihydroxyethyl)-3,4-dihydroxytetrahydrofuran-2-yl glycinate (2), named oleracone Q by spectroscopic methods, including 1D, 2D NMR and compound fingerprints. Additionally, their anti-inflammatory activities were tested via RAW 264.7 cells induced by LPS and found that they could significantly inhibit the release of IL-1β and TNF-α.
Collapse
Affiliation(s)
- Hongzhe Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Junjie Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Fan He
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| |
Collapse
|
2
|
Thayanuwadtanawong O, Duangupama T, Bunbamrung N, Pittayakhajonwut P, Intaraudom C, Tadtong S, Suriyachadkun C, He YW, Tanasupawat S, Thawai C. Streptomyces telluris sp. nov., a promising terrestrial actinobacterium with antioxidative potentials. Arch Microbiol 2023; 205:247. [PMID: 37212915 DOI: 10.1007/s00203-023-03585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
An actinomycete strain, AA8T, which produced a long straight chain of spores (verticillati type), was isolated from the rhizosphere soil of Mangifera indica in Bangkok, Thailand. A polyphasic taxonomic study was carried out to establish the taxonomic position of the strain. Strain AA8T formed a tight taxonomic position in the 16S rRNA gene tree with Streptomyces roseifaciens MBT76T. In contrast, the genome-based taxonomic analysis showed that strain AA8T shared low average nucleotide identity-BLAST (94.1%), the digital DNA-DNA hybridization (58.2%), and the average amino acid identity (93.6%) values with S. roseifaciens MBT76T. Moreover, a combination of physiological and biochemical properties indicated that strain AA8T was distinguished from all Streptomyces species with effectively published names. Strain AA8T, therefore, represents a novel species of Streptomyces, and the name Streptomyces telluris is proposed for the strain. The type strain is AA8T (= TBRC 8483T = NBRC 113461T). The chemical investigation led to the isolation of nine known compounds (compounds 1-9). Among these compounds, compound 7 (3,4-dihydroxybenzaldehyde) possesses strong antioxidant activity equal to ascorbic acid, a powerful antioxidative agent.
Collapse
Affiliation(s)
- Onnicha Thayanuwadtanawong
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Thitikorn Duangupama
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Khlong Song, 12120, Pathum Thani, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitti Thawai
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
- Actinobacterial Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
3
|
Ali A, Mohanta TK, Asaf S, Rehman N, Al-Housni S, Al-Harrasi A, Khan AL, Al-Rawahi A. Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus. Arch Microbiol 2019; 201:591-601. [PMID: 30714085 DOI: 10.1007/s00203-019-01623-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
Plant endophytes play vital role in plant growth promotion as well as in abiotic and biotic stress tolerance. They also mediate biotransformation of complex organic materials to simpler and useful by-product. Therefore, the role of plant endophyte in plant growth promotion and stress tolerance has gained considerable attention in recent days. Sphingomonas sp. LK11 is an important plant endophyte that actively regulates plant growth. However, the biotransformation and stress tolerance potential of Sphingomonas sp. LK11 was yet to be elucidated. Therefore, we studied the biotransformation of benzoin by Sphingomonas sp. LK11. We found that, Sphingomonans sp. LK11 biotransformed benzoin to benzamide. Further application of benzamide to Cucumis sativus led to decrease in agronomic potential of C. sativus as benzamide acts as an abiotic stress agent. However, the application of Sphingomonas sp. LK11 inoculums with benzamide reverted back the agronomic trait of the plants, suggesting the role of Sphingomonas sp. LK11 in biotransformation and abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amjad Ali
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Tapan Kumar Mohanta
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Sajjad Asaf
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Najeebur Rehman
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Saif Al-Housni
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medicinal Plant Research Center, University of Nizwa, Nizwa, 616, Oman
| |
Collapse
|
4
|
Conti R, Chagas FO, Caraballo-Rodriguez AM, Melo WGDP, do Nascimento AM, Cavalcanti BC, de Moraes MO, Pessoa C, Costa-Lotufo LV, Krogh R, Andricopulo AD, Lopes NP, Pupo MT. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites. Chem Biodivers 2016; 13:727-36. [PMID: 27128202 DOI: 10.1002/cbdv.201500225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/14/2016] [Indexed: 12/25/2022]
Abstract
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Raphael Conti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.,CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil
| | - Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.,CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil
| | - Andrés Mauricio Caraballo-Rodriguez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.,CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil
| | - Weilan Gomes da Paixão Melo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.,CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil
| | | | | | | | - Cláudia Pessoa
- Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,Fundação Oswaldo Cruz (Fiocruz), Fortaleza, CE, Brazil
| | | | - Renata Krogh
- CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Adriano Defini Andricopulo
- CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Norberto Peporine Lopes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil. .,CEPID-CIBFar - Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, FAPESP, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Mining chemodiversity from biodiversity: pharmacophylogeny of medicinal plants of Ranunculaceae. Chin J Nat Med 2016; 13:507-20. [PMID: 26233841 DOI: 10.1016/s1875-5364(15)30045-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/22/2023]
Abstract
This paper reports a pharmacophylogenetic study of a medicinal plant family, Ranunculaceae, investigating the correlations between their phylogeny, chemical constituents, and pharmaceutical properties. Phytochemical, ethnopharmacological, and pharmacological data were integrated in the context of the systematics and molecular phylogeny of the Ranunculaceae. The chemical components of this family included several representative metabolic groups: benzylisoquinoline alkaloids, ranunculin, triterpenoid saponin, and diterpene alkaloids, among others. Ranunculin and magnoflorine were found to coexist in some genera. The pharmacophylogenetic analysis, integrated with therapeutic information, agreed with the taxonomy proposed previously, in which the family Ranunculaceae was divided into five sub-families: Ranunculoideae, Thalictroideae, Coptidoideae, Hydrastidoideae, and Glaucidioideae. It was plausible to organize the sub-family Ranunculoideae into ten tribes. The chemical constituents and therapeutic efficacy of each taxonomic group were reviewed, revealing the underlying connections between phylogeny, chemical diversity, and clinical use, which should facilitate the conservation and sustainable utilization of the pharmaceutical resources derived from the Ranunculaceae.
Collapse
|
6
|
Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:180. [PMID: 26583044 PMCID: PMC4650398 DOI: 10.1186/s13068-015-0356-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.
Collapse
Affiliation(s)
- Jose Serate
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Charles Donald
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Mahboubeh Shabani
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Li Hinchman
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alan Higbee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Mick Mcgee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alex La Reau
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Grace E. Klinger
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Sheena Li
- />RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Chad L. Myers
- />Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Charles Boone
- />Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON Canada
| | - Donna M. Bates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dave Cavalier
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Dustin Eilert
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg Sanford
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Bruce Dale
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Robert Landick
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff Piotrowski
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rebecca Garlock Ong
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
7
|
Pu X, Li G, Yang T, Li G, Yi J, Zhang G, Luo Y. A new cyclododeca[d]oxazole derivative from Streptomyces spp. CIBYL1. Nat Prod Res 2012; 27:603-8. [DOI: 10.1080/14786419.2012.682997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xiang Pu
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
- b Graduate University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Guangzhou Li
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
- c Institute of Chinese Materia Medica , Sichuan Academy of Chinese Medicine Sciences , Chengdu 610041 , People's Republic of China
- d School of Chinese Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengu 610075 , People's Republic of China
| | - Tao Yang
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Guoyou Li
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Jinhai Yi
- c Institute of Chinese Materia Medica , Sichuan Academy of Chinese Medicine Sciences , Chengdu 610041 , People's Republic of China
- d School of Chinese Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengu 610075 , People's Republic of China
| | - Guolin Zhang
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| | - Yinggang Luo
- a Center for Natural Products Research , Chengdu Institute of Biology of the Chinese Academy of Sciences , Chengdu 610041 , People's Republic of China
| |
Collapse
|
8
|
Feng N, Ye W, Wu P, Huang Y, Lin L, Wei X. Amides Produced by Streptoverticillium Morookaense. Nat Prod Commun 2007. [DOI: 10.1177/1934578x0700200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new amide, 5,8-dimethoxynaphthalene-2-carboxamide (1), together with 2-phenylacetamide (2), 4-methoxybenzamide (3), 3,4-dimethoxybenzamide (4), 3,4-dimethoxycinnamamide (5), and 4,6-diacetylaminoresorcinol (6), was isolated from the solid culture of Streptoverticillium morookaense. The structure was elucidated by spectroscopic methods. The antifungal activity of the isolated amides was assessed against Peronophythora litchii.
Collapse
Affiliation(s)
- Na Feng
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| | - Wanhui Ye
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| | - Ping Wu
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| | - Yicun Huang
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| | - Lidong Lin
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| | - Xiaoyi Wei
- South China Botanical Garden, Chinese Academy of Sciences, Leyiju, Guangzhou 510650, China
| |
Collapse
|