1
|
Chandrasekar CM, Carullo D, Saitta F, Krishnamachari H, Bellesia T, Nespoli L, Caneva E, Baschieri C, Signorelli M, Barbiroli AG, Fessas D, Farris S, Romano D. Valorization of citrus peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: An in-depth investigation. Carbohydr Polym 2024; 344:122539. [PMID: 39218557 DOI: 10.1016/j.carbpol.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.
Collapse
Affiliation(s)
- Chandra Mohan Chandrasekar
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Daniele Carullo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Francesca Saitta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | | | - Tommaso Bellesia
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Luca Nespoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Carlo Baschieri
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Alberto Giuseppe Barbiroli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
2
|
Quintieri L, Palumbo M, Ricci I, Pace B, Caputo L, Adduci A, Luparelli A, Cefola M, Siano F, Cozzolino R. Postharvest Quality of Citrus medica L. (cv Liscia-Diamante) Fruit Stored at Different Temperatures: Volatile Profile and Antimicrobial Activity of Essential Oils. Foods 2024; 13:1596. [PMID: 38890825 PMCID: PMC11171597 DOI: 10.3390/foods13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Citron (Citrus medica L. cv. Liscia-diamante), cultivated in the "Riviera dei Cedri" (southern Italy), is mainly utilized in the production of candied fruit and essential oils (EOs). Up to now, no information regarding the effect of storage temperatures on citron has been reported. Here, citron samples, after harvesting, were stored at different temperatures (5, 10 and 20 °C at 70% relative humidity) for two weeks, and the main postharvest quality parameters were evaluated. Moreover, EOs extracted from the stored samples were chemically characterized to reveal changes in the volatiles profile and antimicrobial activity. The EOs presented monoterpene hydrocarbons (87.1 to 96.3% of the total oil profile) as the most abundant compounds, followed by oxygenated metabolites ranging from 9.7 to 3.1% of the total pattern. Postharvest quality traits showed a good retention of green peel color during storage at 5 °C, while EOs from samples stored for 7 and 14 days at 10 and 20 °C, respectively, showed the highest antimicrobial activity against most assayed strains. The results indicated storage at 10 °C for 7 days as the most suitable for the preservation of the postharvest quality of the fruit and the antimicrobial activity of the extracted EOs.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Michela Palumbo
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Ilde Ricci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Angelo Adduci
- Consorzio del Cedro di Calabria, Corso del Tirreno, 353, 87020 Santa Maria del Cedro, Italy
| | - Anna Luparelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.); (A.L.)
| | - Maria Cefola
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via M. Protano, 71121 Foggia, Italy; (M.P.); (I.R.); (B.P.)
| | - Francesco Siano
- Institute of Food Science, National Research Council of Italy (CNR), Via Roma 64, 83100 Avellino, Italy;
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council of Italy (CNR), Via Roma 64, 83100 Avellino, Italy;
| |
Collapse
|
3
|
Benedetto N, Carlucci V, Faraone I, Lela L, Ponticelli M, Russo D, Mangieri C, Tzvetkov NT, Milella L. An Insight into Citrus medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2267. [PMID: 37375892 DOI: 10.3390/plants12122267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Plant species are a reservoir of natural compounds that can potentially be used to treat different diseases. Citrus medica Linn. belonging to the Rutaceae family, has been used for centuries in medicine for its antioxidant, anti-inflammatory, antimicrobial, antiviral, and antihyperglycemic properties. These activities are ascribable not only to the presence of health-promoting macronutrients and micronutrients, such as carbohydrates, minerals, amino acids, and vitamins, but also to specialized metabolites, such as flavonoids (apigenin, hesperetin, hesperidin, naringin, naringenin, rutin, quercetin, and diosmin), coumarins (citropten, scoparone, and bergapten), terpenes (limonene, γ-terpinene, limonin, and nomilin), and phenolic acids (p-coumaric acid, trans-ferulic acid, and chlorogenic acid). In recent years, particular attention has been focused on the antioxidant, anti-inflammatory, antimicrobial activity, antidiabetic, anticancer, and neuroprotective activity of C. medica. However, although many studies have reported this species' chemical and biological properties, the literature has never been analyzed via a systematic approach. For this reason, using PubMed and Scopus as databases, we performed a systematic review of C. medica's chemical composition and biological properties to inspire new research approaches and increase its curative application.
Collapse
Affiliation(s)
- Nadia Benedetto
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff Bioactiplant, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Tundis R, Xiao J, Silva AS, Carreiró F, Loizzo MR. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. PLANTS (BASEL, SWITZERLAND) 2023; 12:991. [PMID: 36903853 PMCID: PMC10005512 DOI: 10.3390/plants12050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
| | - Filipa Carreiró
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
5
|
Ben Hsouna A, Sadaka C, Generalić Mekinić I, Garzoli S, Švarc-Gajić J, Rodrigues F, Morais S, Moreira MM, Ferreira E, Spigno G, Brezo-Borjan T, Akacha BB, Saad RB, Delerue-Matos C, Mnif W. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants (Basel) 2023; 12:481. [PMID: 36830039 PMCID: PMC9952696 DOI: 10.3390/antiox12020481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives. In this review, a list of bibliographic reports (from 2015 onwards) on the phytochemical composition, beneficial effects and potential applications of citrus fruits and their by-products is systematically summarized. In detail, information regarding the nutraceutical and medicinal value closely linked to the presence of numerous bioactive metabolites and their growing use in the food industry and food packaging, also considering any technological strategies such as encapsulation to guarantee their stability over time, were evaluated. In addition, since citrus fruit, as well as its by-products, are interesting alternatives for the reformulation of natural cosmetic products, the sector of the cosmetic industry is also explored. More in-depth knowledge of the latest information in this field will contribute to future conscious use of citrus fruits.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Jaroslava Švarc-Gajić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Francisca Rodrigues
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M. Moreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Eduarda Ferreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Giorgia Spigno
- DiSTAS, Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Tanja Brezo-Borjan
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| |
Collapse
|
6
|
Andrade MA, Barbosa CH, Shah MA, Ahmad N, Vilarinho F, Khwaldia K, Silva AS, Ramos F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants (Basel) 2022; 12:antiox12010038. [PMID: 36670900 PMCID: PMC9855225 DOI: 10.3390/antiox12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Citrus production produces about 15 million tons of by-products/waste worldwide every year. Due to their high content of bioactive compounds, several extraction techniques can be applied to obtain extracts rich in valuable compounds and further application into food applications. Distillation and solvent extraction continues to be the most used and applied extraction techniques, followed by newer techniques such as microwave-assisted extraction and pulsed electric field extraction. Although the composition of these extracts and essential oils directly depends on the edaphoclimatic conditions to which the fruit/plant was exposed, the main active compounds are D-limonene, carotenoids, and carbohydrates. Pectin, one of the most abundant carbohydrates present in Citrus peels, can be used as a biodegradable polymer to develop new food packaging, and the extracted bioactive compounds can be easily added directly or indirectly to foods to increase their shelf-life. One of the applications is their incorporation in active food packaging for microbiological and/or oxidation inhibition, prolonging foods' shelf-life and, consequently, contributing to reducing food spoilage. This review highlights some of the most used and effective extraction techniques and the application of the obtained essential oils and extracts directly or indirectly (through active packaging) to foods.
Collapse
Affiliation(s)
- Mariana A. Andrade
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
| | - Cássia H. Barbosa
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA de Lisboa, FCT NOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | - Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Fernanda Vilarinho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-Chimique, INRAP, Pôle Technologique de Sidi Thabet, Tunis 2020, Tunisia
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4051-401 Oporto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
- Correspondence:
| |
Collapse
|
7
|
Microencapsulation of Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14091730. [PMID: 35566899 PMCID: PMC9099681 DOI: 10.3390/polym14091730] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile compounds extracted from different parts of plants by different methods. There is a large diversity of these natural substances with varying properties that lead to their common use in several areas. The agrochemical, pharmaceutical, medical, food, and textile industry, as well as cosmetic and hygiene applications are some of the areas where EOs are widely included. To overcome the limitation of EOs being highly volatile and reactive, microencapsulation has become one of the preferred methods to retain and control these compounds. This review explores the techniques for extracting essential oils from aromatic plant matter. Microencapsulation strategies and the available technologies are also reviewed, along with an in-depth overview of the current research and application of microencapsulated EOs.
Collapse
|
8
|
Recent advances in valorization of citrus fruits processing waste: a way forward towards environmental sustainability. Food Sci Biotechnol 2021; 30:1601-1626. [PMID: 34925937 DOI: 10.1007/s10068-021-00984-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are well known for their medicinal and therapeutic potential due to the presence of immense bioactive components. With the enormous consumption of citrus juice, citrus processing industries are focused on the production of juice but at the same time, a large amount of waste is produced mainly in the form of peel, seeds, pomace, and wastewater. This waste left after processing leads to environmental pollution and health-related hazards. However, it could be exploited for the recovery of essential oils, pectin, nutraceuticals, macro and micronutrients, ethanol, and biofuel generation. In view of the importance and health benefits of bioactive compounds found in citrus waste, the present review summarizes the recent work done on the citrus fruit waste valorization for recovery of value-added compounds leading to zero wastage. Therefore, instead of calling it waste, these could be a good resource of significant valuable components, in this way encouraging the zero-waste theory.
Collapse
|
9
|
Kaur S, Panesar PS, Chopra HK. Citrus processing by-products: an overlooked repository of bioactive compounds. Crit Rev Food Sci Nutr 2021; 63:67-86. [PMID: 34184951 DOI: 10.1080/10408398.2021.1943647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus fruits contain plethora of bioactive compounds stored in edible as well as inedible part. Since, citrus fruits are processed mainly for juice, the residues are disposed in wastelands, hence, plenty of nutritional potential goes in vain. But if utilized wisely, the bioactive phytochemicals in citrus by-products have the ability to revolutionize the functional food industry. In the present review, the composition of citrus by-products in terms of bioactive components and their health benefits has been reviewed. Various extraction techniques used to extract these bioactives has been discussed and a brief overview of purification and utilization of the extracted compounds, in food and nutraceutical industry is also presented. Bioactives in citrus by-products are higher than the peeled fruit, which can be extracted, isolated and incorporated into food systems for development of health foods. From the studies reviewed, it was observed that research reported on utilization of citrus by-products is limited to mainly research labs; proper scale-up process and its adequate research commercialization is the need of hour to transform these bioactives into economical functional ingredients.
Collapse
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Harish K Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
10
|
Minerals, Essential Oils, and Biological Properties of Melissa officinalis L. PLANTS 2021; 10:plants10061066. [PMID: 34073337 PMCID: PMC8229312 DOI: 10.3390/plants10061066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022]
Abstract
This study describes the minerals elements, chemical composition, antioxidant and antimicrobial activities of Algerian Melissa officinalis plant. The essential oil (EO) was extracted by hydrodistillation (HD) using a Clevenger-type apparatus of dry leaves of M. officinalis and was analyzed by two techniques, gas chromatography coupled with flame ionization (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). Eighteen minerals comprising both macro- and microelements (As, Br, K, La, Na, Sb, Sm, Ba, Ca, Ce, Co, Cr, Cs, Fe, Rb, Sc, Th, and Zn) were determined using neutron activation analysis technique for the first time from Algerian Melissa officinalis plant. Seventy-eight compounds were identified in the essential oil, representing 94.090% of the total oil and the yields were 0.470%. The major component was geranial (45.060%). Other predominant components were neral (31.720%) and citronellal (6.420%). The essential oil presented high antimicrobial activity against microorganisms, mainly five human pathogenic bacteria, one yeast, Candida albicans, and two phytopathogenic fungi. The results can be used as a source of information for the pharmaceutical industry and medical research.
Collapse
|
11
|
Singh B, Singh JP, Kaur A, Yadav MP. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res Int 2021; 143:110231. [PMID: 33992345 DOI: 10.1016/j.foodres.2021.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Citrus peel (CP), a by-product of the citrus fruit processing, comprises nearly forty to fifty percent of the fruit portion. Interestingly, the essential oil (EO) is primarily concentrated in the peel portion of the citrus fruit. Extraction of CP essential oil (CPEO) is an effective way of utilizing the citrus fruit processing waste. The CPEO can be more efficiently recovered from CP waste by improving the efficiency of conventional extraction processes. The main components of CPEO include monoterpenes, sesquiterpenes and their oxygenated derivatives. Specifically, limonene is the major oil component identified in the peel of different citrus species. The health promoting biological activities of CPEO are functioning as antioxidant, anti-inflammatory, analgesic, antimicrobial and anticancer agents, thereby can be used as a source of functional components and preservatives for the development of nutritionally safe newer food products. This paper provides an in-depth knowledge about the chemical constituents and bioactivities of EOs extracted from peels of different citrus species.
Collapse
Affiliation(s)
- Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar 143002, Punjab, India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Madhav P Yadav
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
12
|
Hosseinkhani A, Ziaian B, Hessami K, Kashkooe A, Pasalar M. An Evidence-Based Review of Antitussive Herbs Containing Essential Oils in Traditional Persian Medicine. Curr Drug Discov Technol 2021; 18:179-185. [PMID: 32316897 DOI: 10.2174/1568009620666200421091245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cough is one of the most common medical symptoms for which medical advice is sought. Although cough is a protective reflex responsible for clearing the airways from secretions and foreign bodies, it can be a troublesome symptom that causes discomfort to patients. Due to the increasing interest in herbal remedies in both developed and developing countries, in the current study, we aimed to overview medicinal herbs containing essential oils used as antitussive agents according to Traditional Persian Medicine (TPM) textbooks. We summarized the relevant scientific evidence on their possible pharmacological effects. METHODS To collect the evidence for the treatment of cough or "seaal" (cough in ancient books) from TPM sources, five main medicinal Persian manuscripts were studied. The antitussive herbs were listed and their scientific names were identified and authenticated following botanical reference books. ScienceDirect and PubMed online databases were searched for related mechanisms of action of the reported medicinal plants. RESULTS Forty-nine herbs containing essential oils have been recommended in TPM for the treatment of cough; 21 of them had at least one known mechanism of action for cough suppression in the scientific literature. According to this review, most of the cited medicinal plants were assessed for either nitric oxide inhibitory or antitussive/expectorant activities. CONCLUSION In addition to advantageous effects of antitussive herbs recommended by TPM, the present review highlighted some recent evidence-based data on these promising herbs that could be used as an outline for future research on their medicinal use.
Collapse
Affiliation(s)
- Ayda Hosseinkhani
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Ziaian
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Hessami
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Lee JE, Seo SM, Huh MJ, Lee SC, Park IK. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104644. [PMID: 32711777 DOI: 10.1016/j.pestbp.2020.104644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 05/09/2023]
Abstract
To find new and safe type of control agents against phytopathogenic fungi, the fumigant antifungal activity of 10 plant essential oils and constituents identified in cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils was investigated against two phytopathogenic fungi, Raffaelea quercus-mongolicae and Rhizoctonia solani. Among plant essential oils, cinnamon bark and lemongrass essential oils showed 100% inhibition of R. quercus-mongolicae and R. solani at 5 mg/paper disc, respectively. Among test constituents, salicylaldehyde, eugenol, and hydrocinnamaldehyde showed 100% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geraniol, geranial, trans-cinnamaldehyde, methyl cinnamate, isoeugenol, and methyl eugenol exhibited >80% inhibition of growth of R. quercus-mongolicae at 2.5 mg/paper disc. Neral, geranial, trans-cinnamaldehyde, hydrocinnamaldehyde, and salicylaldehyde showed 100% inhibition of growth of R. solani at 2.5 mg/paper disc. A fumigant antifungal bioassay of artificial blends of the constituents identified in cinnamon bark and lemongrass essential oils indicated that trans-cinnamaldehyde and geranial were major contributors to the fumigant antifungal activity of the artificial blend. Confocal laser scanning microscopy images of fungi treated with cinnamon bark and lemongrass essential oils, trans-cinnamaldehyde, neral, and geranial revealed the reactive oxygen species (ROS) generation and cell membrane disruption.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Seon-Mi Seo
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jung Huh
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Chan Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Kwon Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Anticona M, Blesa J, Frigola A, Esteve MJ. High Biological Value Compounds Extraction from Citrus Waste with Non-Conventional Methods. Foods 2020; 9:E811. [PMID: 32575685 PMCID: PMC7353614 DOI: 10.3390/foods9060811] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Citrus fruits are extensively grown and much consumed around the world. Eighteen percent of total citrus cultivars are destined for industrial processes, and as a consequence, large amounts of waste are generated. Citrus waste is a potential source of high biological value compounds, which can be used in the food, pharmaceutical, and cosmetic industries but whose final disposal may pose a problem due to economic and environmental factors. At the same time, the emerging need to reduce the environmental impact of citrus waste and its responsible management has increased. For these reasons, the study of the use of non-conventional methods to extract high biological value compounds such as carotenoids, polyphenols, essential oils, and pectins from this type of waste has become more urgent in recent years. In this review, the effectiveness of technologies such as ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, pressurized water extraction, pulsed electric field, high-voltage electric discharges, and high hydrostatic pressures is described and assessed. A wide range of information concerning the principal non-conventional methods employed to obtain high-biological-value compounds from citrus waste as well as the most influencing factors about each technology are considered.
Collapse
Affiliation(s)
| | | | | | - Maria Jose Esteve
- Nutrition and Food Chemistry, University of Valencia, Avda., Vicent Andrés Estellés, s/n., 46100 Burjassot, Spain; (M.A.); (J.B.); (A.F.)
| |
Collapse
|
15
|
Montalván M, Peñafiel MA, Ramírez J, Cumbicus N, Bec N, Larroque C, Bicchi C, Gilardoni G. Chemical Composition, Enantiomeric Distribution, and Sensory Evaluation of the Essential Oils Distilled from the Ecuadorian Species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtaceae). PLANTS (BASEL, SWITZERLAND) 2019; 8:E511. [PMID: 31731807 PMCID: PMC6918321 DOI: 10.3390/plants8110511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
The essential oils of Myrcianthes myrsinoides and Myrcia mollis, belonging to the Myrtaceae family, were obtained by steam distillation. They were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detector (GC-FID), enantioselective gas chromatography, and gas chromatography-olfactometry (GC-O). A total of 58 compounds for Myrcianthes myrsinoides essential oil (EO) and 22 compounds for Myrcia mollis EO were identified and quantified by GC-MS with apolar and polar columns (including undetermined components). Major compounds (>5.0%) were limonene (5.3%-5.2%), 1,8-cineole (10.4%-11.6%), (Z)-caryophyllene (16.6%-16.8%), trans-calamenene (15.9%-14.6%), and spathulenol (6.2%-6.5%). The enantiomeric excess of eight chiral constituents was determined, being (+)-limonene and (+)-germacrene D enantiomerically pure. Eight components were identified as determinant in the aromatic profile: α-pinene, β-pinene, (+)-limonene, γ-terpinene, terpinolene, linalool, β-elemene and spathulenol. For M. mollis, the major compounds (>5.0%) were α-pinene (29.2%-27.7%), β-pinene (31.3%-30.0%), myrcene (5.0%-5.2%), 1,8-cineole (8.5%-8.7%), and linalool (7.7%-8.2%). The enantiomeric excess of five chiral constituents was determined, with (S)-α-pinene and (+)-germacrene D enantiomerically pure. The metabolites β-pinene, 1,8-cineole, γ-terpinene, terpinolene, linalool, and (E)-β-caryophyllene were mainly responsible for the aroma of the EO. Finally, the M. myrsinoides essential oil has an inhibitory activity for cholinesterase enzymes (IC50 of 78.6 μg/ml and 18.4 μg/ml vs. acethylcholinesterase (AChE) and butyrylcholinesterase (BChE) respectively). This activity is of interest to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mayra Montalván
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador; (M.M.); (M.A.P.); (J.R.); (N.C.)
| | - Manuel Alejandro Peñafiel
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador; (M.M.); (M.A.P.); (J.R.); (N.C.)
| | - Jorge Ramírez
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador; (M.M.); (M.A.P.); (J.R.); (N.C.)
| | - Nixon Cumbicus
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador; (M.M.); (M.A.P.); (J.R.); (N.C.)
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRBM), Centre Hospitalier Universitaire de Montpellier, Inserm U1183, 34295 Montpellier, France;
| | - Christian Larroque
- Supportive Care Unit, Institut du Cancer de Montpellier (ICM), 34298 Montpellier, France;
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Gianluca Gilardoni
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Calle M. Champagnat s/n, Loja 1101608, Ecuador; (M.M.); (M.A.P.); (J.R.); (N.C.)
| |
Collapse
|
16
|
Lu Q, Huang N, Peng Y, Zhu C, Pan S. Peel oils from three Citrus species: volatile constituents, antioxidant activities and related contributions of individual components. Journal of Food Science and Technology 2019; 56:4492-4502. [PMID: 31686681 DOI: 10.1007/s13197-019-03937-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
In the present study, peel oils were extracted through hydrodistillation and cold pressing from three Citrus species (Valencia orange, Ponkan and Eureka lemon) to investigate their volatile constituents and antioxidant activities. A total of 47 volatile components were identified by GC-MS, and then grouped by principal component analysis. The extraction methods were found to have an obvious effect on the proportion of terpenes and oxygenated compounds in the six Citrus oils, especially for Eureka lemon oils. The major fractions in the Citrus oils were found to be monoterpenes (78.65-96.57%), with limonene occupying a dominant percentage (51.22-86.65%). Furthermore, γ-terpinene and terpinolene displayed strong DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging abilities and efficient inhibition of lipid peroxidation, while oxygenated compounds of α-terpineol and terpinen-4-ol showed poor DPPH radical-scavenging abilities. Therefore, hydrodistillated Eureka lemon oil with high levels of α-terpineol (9.11%) and terpinen-4-ol (4.69%) presented low radical scavenging capability. Citral displayed a high pro-oxidant ability against thiobarbituric acid reactive species formation, which might lead to the decreased ability of the Eureka lemon oils in inhibition of lipid peroxidation, since citral was significantly high in Eureka lemon oils. This study facilitated the understanding of volatile constituents and antioxidant activities in different Citrus peel oils.
Collapse
Affiliation(s)
- Qi Lu
- 1Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Nana Huang
- 2College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei People's Republic of China
| | - Ying Peng
- 2College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei People's Republic of China
| | - Chunhua Zhu
- 2College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei People's Republic of China
| | - Siyi Pan
- 2College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei People's Republic of China
| |
Collapse
|
17
|
Flamini G, Pistelli L, Nardoni S, Ebani VV, Zinnai A, Mancianti F, Ascrizzi R, Pistelli L. Essential Oil Composition and Biological Activity of "Pompia", a Sardinian Citrus Ecotype. Molecules 2019; 24:E908. [PMID: 30841559 PMCID: PMC6429368 DOI: 10.3390/molecules24050908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/02/2022] Open
Abstract
Pompia is a Sardinian citrus ecotype whose botanical classification is still being debated. In the present study, the composition of Pompia peel essential oil (EO) is reported for the first time, along with that of the leaf EO, as a phytochemical contribution to the classification of this ecotype. The peel EO was tested for its antioxidant ability (with both the 2,2-diphenyl-1-picarylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays). Moreover, its antimicrobial activities were tested for the first time on dermatophytes (Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes), on potentially toxigenic fungi (Fusarium solani, Aspergillus flavus, and Aspergillus niger) as well on bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius). The dominant abundance of limonene in the peel EO seems to distinguish Pompia from the Citrus spp. to which it had previously been associated. It lacks γ-terpinene, relevant in Citrus medica EO. Its relative content of α- and β-pinene is lower than 0.5%, in contrast to Citrus limon peel EO. Pompia peel and leaf EOs did not show significant amounts of linalool and linalyl acetate, which are typically found in Citrus aurantium. Pompia peel EO antioxidant activity was weak, possibly because of its lack of γ-terpinene. Moreover, it did not exert any antimicrobial effects either towards the tested bacteria strains, or to dermatophytes and environmental fungi.
Collapse
Affiliation(s)
- Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Laura Pistelli
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Simona Nardoni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Valentina Virginia Ebani
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Angela Zinnai
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Francesca Mancianti
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Luisa Pistelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
18
|
del Valle JM, Calderón D, Núñez GA. Pressure drop may negatively impact supercritical CO2 extraction of citrus peel essential oils in an industrial-size extraction vessel. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Pasandide B, Khodaiyan F, Mousavi Z, Hosseini SS. Pectin extraction from citron peel: optimization by Box-Behnken response surface design. Food Sci Biotechnol 2018; 27:997-1005. [PMID: 30263828 PMCID: PMC6085243 DOI: 10.1007/s10068-018-0365-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 03/25/2018] [Indexed: 11/27/2022] Open
Abstract
In this study, the effect of acidic extraction conditions (time of 30-90 min, temperature of 75-95 °C and pH of 1.5-3) on the yield and degree of esterification (DE) of citron peel pectin was investigated applying Box-Behnken design. The highest production yield of pectin (28.31 ± 0.11%) was achieved at extraction time of 90 min, temperature of 95 °C and pH of 1.5, as optimal extraction conditions, which was close to the predicted value (29.87%). Under optimum extraction conditions, the DE and the emulsifying activity were 51.33 and 46.2%, respectively. In addition, the emulsions were 93.9 and 93.5 stable at 4 °C, 93.7 and 93.1 at 23 °C after 1 and 30 days, respectively. The determination of flow behavior showed that the pectin solutions had a Newtonian behavior at low concentrations (< 1.0% w/v), while this behavior was changed to pseudoplastic with increasing concentration.
Collapse
Affiliation(s)
- Bahare Pasandide
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Technology and Engineering, University of Tehran, Karaj, 31587-77871 Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Technology and Engineering, University of Tehran, Karaj, 31587-77871 Iran
| | - Zeinab Mousavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Technology and Engineering, University of Tehran, Karaj, 31587-77871 Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science, Technology and Engineering, University of Tehran, Karaj, 31587-77871 Iran
| |
Collapse
|
20
|
Mitropoulou G, Fitsiou E, Spyridopoulou K, Tiptiri-Kourpeti A, Bardouki H, Vamvakias M, Panas P, Chlichlia K, Pappa A, Kourkoutas Y. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Manconi M, Manca ML, Marongiu F, Caddeo C, Castangia I, Petretto GL, Pintore G, Sarais G, D'hallewin G, Zaru M, Bacchetta G, Fadda AM. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int J Pharm 2016; 506:449-57. [PMID: 27084291 DOI: 10.1016/j.ijpharm.2016.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
The components of pompia, a hybrid Citrus species cultivated only in Sardinia (Italy), were extracted using an environmentally-friendly method and food-grade solvents. Taking into account that only few data are available on pompia composition, the phytochemical fingerprint of its rind extract was obtained by accurate component separation and identification, combining HPLC and mass spectrometry. Different flavones such as naringin (23.77μg/mg), neoeriocitrin (46.53μg/mg) and neohesperidin (44.57μg/mg) were identified. Additionally, the antioxidant activity and phenolic content were confirmed by DPPH and Folin-Ciocalteu assays. The whole extract was incorporated in innovative phospholipid vesicles, namely glycerosomes, hyalurosomes and glycerol containing hyalurosomes, which were prepared using a high ratio of extract/phospholipid (1/3.5w/w). The in vitro biocompatibility of the nanoincorporated extract and its ability to potentiate the aptitude of the extract to counteract oxidative stress in skin cells were evaluated. The vesicles, especially glycerol containing hyalurosomes, were able to prevent oxidative damage and death of both keratinocytes and fibroblasts, promoting their viability.
Collapse
Affiliation(s)
- Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy.
| | - Francesca Marongiu
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Carla Caddeo
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Ines Castangia
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | | | - Giorgio Pintore
- Dept. of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giorgia Sarais
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Guy D'hallewin
- Institute of Science of Food Production UOS Sassari-CNR, Traversa la Crucca, 3 Loc. Baldinca, 07040 Sassari, Italy
| | - Marco Zaru
- Icnoderm srl, Sardegna Ricerche Ed.5, Pula (Cagliari), 09010, Italy
| | - Gianluigi Bacchetta
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Zhao J, Ge LY, Xiong W, Leong F, Huang LQ, Li SP. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014). J Chromatogr A 2015; 1428:39-54. [PMID: 26385085 DOI: 10.1016/j.chroma.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
In 2011, we wrote a review for summarizing the phytochemical analysis (2006-2010) of medicine and food dual purposes plants used in China (Zhao et al., J. Chromatogr. A 1218 (2011) 7453-7475). Since then, more than 750 articles related to their phytochemical analysis have been published. Therefore, an updated review for the advanced development (2011-2014) in this topic is necessary for well understanding the quality control and health beneficial phytochemicals in these materials, as well as their research trends.
Collapse
Affiliation(s)
- Jing Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Li-Ya Ge
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Wei Xiong
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Fong Leong
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shao-Ping Li
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
23
|
Liu Y, Liu Z, Wang C, Zha Q, Lu C, Song Z, Ning Z, Zhao S, Lu X, Lu A. Study on essential oils from four species of Zhishi with gas chromatography-mass spectrometry. Chem Cent J 2014; 8:22. [PMID: 24708882 PMCID: PMC4234976 DOI: 10.1186/1752-153x-8-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/19/2014] [Indexed: 12/04/2022] Open
Abstract
Background Citrus fruits are widely used as food and or for medicinal purposes, and they contain a host of active substances that contribute to health. The immature fruits of Citrus sinensis Osbeck and its cultivars (CS), C. junos Sieb. ex Tanaka (CJ), C. aurantium L. and its cultivars (CA) and Poncirus trifoliate Raf. (PT) are the most commonly used medicinal herbs in Traditional Chinese Medicine, called Zhishi. And their mature fruits can be used as food. Results In this study, the essential oils of four different Zhishi species were extracted by steam distillation and detected using gas chromatography- mass spectrometry (GC-MS). A total of 39 volatiles from the four species were tentatively identified. The limonene was the most abundant amongst the four species. Principal component analysis (PCA) of essential oils showed a clear separation of volatiles among CS, CJ and PT. However, CA could not be separated from these three species. Additionally, the volatiles accounting for the variations among the widely separated species were characterized through their corresponding loading weight. Conclusion Sesquiterpenes were identified as characteristic markers for PT. The content of some monoterpenes could be as taxonomic markers between CS and CJ. This work is of great importance for the evaluation and authentication of Zhishi samples through essential oils.
Collapse
Affiliation(s)
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer's Disease Therapy. Curr Neuropharmacol 2013; 11:388-413. [PMID: 24381530 PMCID: PMC3744903 DOI: 10.2174/1570159x11311040004] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 12/20/2022] Open
Abstract
As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer's disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer's disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Research Member of CONICET
| | - María Belén Faraoni
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Research Member of CIC
| | - María Julia Castro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Natalia Paola Alza
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
25
|
Suetsugu T, Tanaka M, Iwai H, Matsubara T, Kawamoto Y, Saito C, Sasaki Y, Hoshino M, Quitain AT, Sasaki M, Sakamoto J, Goto M. Supercritical CO2 extraction of essential oil from Kabosu (Citrus sphaerocarpa Tanaka) peel. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2044-7248-2-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Citrus sphaerocarpa Hort. ex Tanaka is one of many popular sour citruses in Japan. Its juice processing peel residues contain a lot of useful compounds including essential oil. Our interests mainly focused on the extraction of this essential oil using supercritical carbon dioxide (SC-CO2), an environmentally benign and generally regarded as safe solvent that has many advantages such as low critical temperature, low viscosity, and easy separation from the extract. In this research, essential oil was extracted from Citrus sphaerocarpa Tanaka peel using SC-CO2 at extraction temperatures of 313 to 353 K and pressures of 10 to 30 MPa.
Results
A maximum yield of 1.55% (by weight of wet sample) was obtained at the temperature of 353 K and the pressure of 20 MPa. The yield obtained by SC-CO2 method was over 13 times higher than that of the conventional cold-press method. Extracted essential oil was qualitatively analyzed using GC/MS, identifying 49 compounds including several non-polar and weakly polar hydrocarbons such as terpenoid, free fatty acid, and coumarin. Compared to the extracts obtained by the conventional methods, the extracts by SC-CO2 had lower content of monoterpenes and higher content of oxygenated compounds, sesquiterpenes, which strongly contribute to the aromatic characteristics of the extracts. Auraptene, a bioactive compound was also identified in the SC-CO2 extract.
Conclusions
Kabosu essential oil with a fresh natural fragrance was effectively extracted using SC-CO2 compared to the conventional extraction method. In addition, it was found that the extract contained higher content of aromatic components that characterize Kabosu. This work provides an important sequential method for the recovery of valuable compounds from citrus fruit waste using an environmentally friendly technique.
Collapse
|
26
|
Tundis R, Loizzo MR, Bonesi M, Menichini F, Mastellone V, Colica C, Menichini F. Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils. J Food Sci 2012; 77:H40-6. [PMID: 22260108 DOI: 10.1111/j.1750-3841.2011.02511.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED The interest in medicinal plant research and in the aroma-therapeutic effects of essential oils in humans has increased in recent years, especially for the treatment of pathologies of relevant social impact such as Alzheimer's disease. The present study was taken up to evaluate the antioxidant capacity and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the peel essential oils from three Citrus species, C. aurantifolia Swingle, C. aurantium L., and C. bergamia Risso & Poit. Essential oils were analyzed by GC and GC-MS and they contain mainly limonene, α-pinene, β-pinene, γ-terpinene, and linalyl acetate. C. aurantifolia oil showed the highest radical scavenging activity on ABTS assay (IC₅₀ value of 19.6 μg/mL), while C. bergamia exhibited a good antioxidant activity evaluated by the β-carotene bleaching test (IC₅₀ = 42.6 μg/mL after 60 min of incubation). C. aurantifolia inhibited more selectively AChE. Obtained data suggest a potential use of Citrus oils as a valuable new flavor with functional properties for food or nutraceutical products with particular relevance to supplements for the elderly. PRACTICAL APPLICATION The demonstrated antioxidant activity and procholinesterase properties of Citrus essential oils suggested their use as a new potential source of natural antioxidant to added as extra-nutrient for using in food industries as a valuable new flavor with functional properties for food or nutraceutical products with particular relevance to supplements for the elderly.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Nutrition and Health Sciences, University of Calabria, Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|