1
|
Petrova NV, Chernonosov AA, Koval VV, Andreeva VY, Erst AS, Kuznetsov AA, Kulikovskiy MS, Wang W, Yu SX, Kostikova VA. LC-HRMS for the Identification of Quercetin and Its Derivatives in Spiraea hypericifolia (Rosaceae) and Anatomical Features of Its Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:381. [PMID: 36679093 PMCID: PMC9861494 DOI: 10.3390/plants12020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Spiraea hypericifolia L. is affiliated with the section Chamaedryon Ser. of the genus Spiraea L. (Rosaceae). Similar to many other Spiraea species, S. hypericifolia most often accumulates flavonols among other flavonoids, in particular quercetin and its derivatives. An ethanol-water extract from the aerial part of S. hypericifolia collected in the vicinity of the Ilyichovo settlement (Krasnoyarsk Krai, Russia) was analyzed by liquid chromatography with high-resolution mass spectrometry. Primary and secondary metabolites were found in the extract; structural interpretation consistent with quercetin and its derivatives was proposed for 10 of them. Major compounds were various glycosides of quercetin containing glucose (four compounds), galactose (one compound), xylose (two compounds), arabinose (one compound), or rutinose (one compound) as a carbohydrate residue. Isorhamnetin and 3-O-methylquercetin-3'-O-β-D-glucopyranoside were identified among methyl-containing compounds. The latter compound and reynoutrin, rhamnetin-3-O-β-D-xylopyranosyl-β-D-glucopyranoside, and quercetin-3-O-(6″-O-malonyl)-β-D-glucoside have not been previously found in S. hypericifolia. Data on the presence of quercetin and its derivatives in the extract of S. hypericifolia expand the understanding of the possible practical use of this plant. In addition, the microscopic features of S. hypericifolia leaves were studied. The diagnostic features of the leaf blade necessary for the authentication of raw materials were revealed: straight-walled epidermis cells, stomata located on both sides of the leaf blade (amphistomatic type), two types of trichomes, and wrinkled cuticula with nodi. The main anatomical diagnostic features of the leaves of S. hypericifolia were determined, which makes it possible to assess the authenticity of the raw material.
Collapse
Affiliation(s)
- Natalia V. Petrova
- Komarov Botanical Institute, Russian Academy of Sciences (BIN RAS), 197376 St. Petersburg, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | | | - Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
| | | | - Maxim S. Kulikovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences (IPP RAS), 127276 Moscow, Russia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Xiang Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (CSBG SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
A strategy for quality evaluation of salt-treated Apocyni Veneti Folium and discovery of efficacy-associated markers by fingerprint-activity relationship modeling. Sci Rep 2019; 9:16666. [PMID: 31723166 PMCID: PMC6853957 DOI: 10.1038/s41598-019-52963-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, a fingerprint-activity relationship between chemical fingerprints and hepatoprotective activity was established to evaluate the quality of salt-treated Apocyni Veneti Folium (AVF). Characteristic fingerprints of AVF samples exposed to different concentrations of salt were generated by ultrafast liquid chromatography tandem triple time-of-flight mass/mass spectrometry (UFLC-Triple TOF-MS/MS), and a similarity analysis was performed based on common characteristic peaks by hierarchical clustering analysis (HCA). Then, the hepatoprotective activity of AVF against CCl4-induced acute liver damage in mice was investigated by assessing biochemical markers and histopathology, which showed that a high dose of AVF exposed to low levels of salt stress produced a marked amelioration of hepatic damage compared with the other salt-treated AVF. Finally, fingerprint-activity relationship modeling, which was capable of discovering the bioactive markers used in the quality evaluation, was investigated by the chemical fingerprints and the hepatoprotective activities utilizing multivariate statistical analysis, gray correlation analysis (GCA) and bivariate correlation analysis (BCA). The results showed that the accumulation of polyphenols, such as flavonoids and phenolic acids, in AVF subjected to low levels of salt stress could result in the effective scavenging of free radicals. Therefore, the present study may provide a powerful strategy to holistically evaluate the quality of salt-treated AVF in combination with chemical fingerprint and bioactivity evaluation.
Collapse
|