1
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
2
|
Wang S, Jiang K, Muthusamy R, Kalaimani S, Selvababu AP, Balupillai A, Narenkumar J, Jeevakaruniyam SJ. Protosappanin-B suppresses human melanoma cancer cell growth through impeding cell survival, inflammation and proliferative signaling pathways. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. J Colloid Interface Sci 2022; 622:298-308. [DOI: 10.1016/j.jcis.2022.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
|
4
|
Anticancer potential of allicin: A review. Pharmacol Res 2022; 177:106118. [DOI: 10.1016/j.phrs.2022.106118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
5
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Xu W, Li XP, Li EZ, Liu YF, Zhao J, Wei LN, Ma L. Protective Effects of Allicin on ISO-Induced Rat Model of Myocardial Infarction via JNK Signaling Pathway. Pharmacology 2020; 105:505-513. [PMID: 32784309 DOI: 10.1159/000503755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This research was aimed to explore protective effects of allicin on rat model of myocardial infarction via JNK signaling pathway. METHODS Rat myocardial ischemia model was established with subcutaneous injection of isoproterenol (ISO). Seventy-five rats were randomly divided into 5 groups (n = 15): sham group, ISO group, low-dose group (1.2 mg/kg/days for 7 days), medium-dose group (1.8 mg/kg/days for 7 days), and high-dose group (3.6 mg/kg/days for 7 days). Routine HE staining and Masson staining were performed to observe myocardial histopathology. The expression of oxidative stress-related indicators, heart tissue apoptosis-related proteins, and JNK and p-JNK proteins were measured for different groups. RESULTS Compared with the sham group, the T wave value of the ISO group was significantly increased (p < 0.01). When allicin was administered, the T wave values at different time points in all groups were all decreased. Compared with the sham group, the ratio of eNOS, Bcl-2/Bax was significantly decreased, and p-eNOS, iNOS, caspase-3, caspase-9, and Cyt-c were significantly elevated in the ISO group (p < 0.05). After allicin was administered, significant changes in these proteins were observed in the medium- and high-dose groups. There was no significant change in the expression of JNK protein in the ISO group compared with the sham group; however, the expression of eNOS and p-JNK protein were significantly upregulated (p < 0.01) and the expression of p-eNOS and iNOS were significantly downregulated (p < 0.01). When allicin was administered, expression of p-JNK protein was significantly downregulated. CONCLUSION Allicin can reduce oxidative stress damage and cardiomyocyte apoptosis in rat model of myocardial infarction and can significantly regulate JNK signaling pathway.
Collapse
Affiliation(s)
- Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Peng Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - En-Ze Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue-Fen Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Na Wei
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Ma
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China,
| |
Collapse
|
7
|
Sut S, Maggi F, Bruno S, Badalamenti N, Quassinti L, Bramucci M, Beghelli D, Lupidi G, Dall’Acqua S. Hairy Garlic ( Allium subhirsutum) from Sicily (Italy): LC-DAD-MS n Analysis of Secondary Metabolites and In Vitro Biological Properties. Molecules 2020; 25:molecules25122837. [PMID: 32575531 PMCID: PMC7355662 DOI: 10.3390/molecules25122837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Allium subhirsutum, known as hairy garlic, is a bulbous plant widespread in the Mediterranean area and locally used as a food and spice. In the present study, the chemical profile of the ethanolic extracts from bulbs (BE) and aerial parts (APE) were analyzed by HPLC-ESI-MSn, and antioxidant properties were evaluated by DPPH, ABTS and TEAC assays. The traditional use in the diet, and the well documented biological activity of Allium species suggest a potential as a new nutraceutical. For this reason, the potential usefulness of this food can be considered in the treatment and prevention of degenerative Alzheimer disease. For this reason, acetylcholinesterase inhibitory property was investigated. Furthermore, due to the observed presence of sulfur-containing and phenolic constituents, the cytotoxicity on tumor cells line was investigated. Results revealed significant AChE inhibitory activity for BE and APE. Both extracts exhibited also moderate antioxidant properties in the in vitro assays. Finally, limited cytotoxic activity was observed towards Human colon carcinoma and adenocarcinoma cell line, with differences between the individual parts tested. HPLC-ESI-MSn analysis showed that hairy garlic is a good source of sulphur compounds, flavonoids and phenylpropanoids derivatives, thus being a valid alternative to the common garlic (A. sativum). This work opens new opportunities for the application of A. subhirsutum as a health-promoting food.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Agronomy Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Sara Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, IT-90128 Palermo, Italy; (S.B.); (N.B.)
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, IT-90128 Palermo, Italy; (S.B.); (N.B.)
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, I-62032 Camerino, Italy;
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
8
|
Shao X, Chen Q, Dou X, Chen L, Wu J, Zhang W, Shao H, Ling P, Liu F, Wang F. Lower range of molecular weight of xanthan gum inhibits cartilage matrix destruction via intrinsic bax-mitochondria cytochrome c-caspase pathway. Carbohydr Polym 2018; 198:354-363. [PMID: 30093011 DOI: 10.1016/j.carbpol.2018.06.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xintian Shao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China; Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China; Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Xixi Dou
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; Shandong Freda Pharmaceutical Group Co., Ltd, Jinan 250101, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Jixu Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China; Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Wei Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Huarong Shao
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Peixue Ling
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China; Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; Shandong Freda Pharmaceutical Group Co., Ltd, Jinan 250101, China.
| | - Fei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China; Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; Shandong Freda Pharmaceutical Group Co., Ltd, Jinan 250101, China.
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China.
| |
Collapse
|
9
|
Jobani BM, Najafzadeh N, Mazani M, Arzanlou M, Vardin MM. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44 + versus CD117 + melanoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:161-169. [PMID: 30195874 DOI: 10.1016/j.phymed.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/14/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) is a differentiating agent that inhibits cancer cell growth during the cell cycle. However, despite its potent antitumor properties, some melanoma cells are resistant to ATRA therapy. PURPOSE Here, we hypothesized that allicin can sensitize malignant melanoma cells to ATRA treatment. To clarify this mechanism, we determined the sensitivity to ATRA, allicin and allicin/ATRA in CD44+ and CD117+ melanoma cell subpopulations. METHODS The CD44+and CD117+cells were sorted from A375 melanoma cell line using the magnetic-activated cell sorting (MACS). The potential anticancer effects of ATRA, allicin and allicin/ATRA were examined using cell proliferation MTT assay. In addition, flow cytometry was used to detect cell cycle arrest. The efficacy of the treatments in controlling cancer cell proliferation was assessed by quantitative realtime polymerase chain reaction (RT-PCR). RESULTS Here, we demonstrated that CD44+ melanoma cells were more resistant to allicin and ATRA than CD117+ cells. Importantly, we observed that allicin sensitized melanoma cell to ATRA-induced cell death. The combination treatment with allicin and ATRA significantly reduced the IC50 value obtained for ATRA alone in CD44+ melanoma cells. In CD44+ cells, the IC50 value of ATRA was 37.43 ± 0.54, while the IC50 value of allicin/ATRA treatment was 17.53 ± 0.2 µM. Allicin treatment resulted in significant increases in the percentage of cells at the G2/M and G0/G1 phases in the CD44+ and CD117+ cells, respectively. The combination treatment caused the inhibition of CD44+ and CD117+ melanoma cells at the S phases compared to ATRA alone. Allicin, ATRA, and allicin/ATRA increased the expression of cyclin D1 mRNA in both CD44+ and CD117+ cells. Allicin combination with ATRA increased the mRNA level of RARβ in CD117+ cells. Furthermore, allicin alone caused a remarkable reduction of MMP-9 mRNA expression in both CD44+ and CD117+ cells. In contrast, ATRA and the combination treatment significantly increased MMP-9 gene expression in CD44+ cells. CONCLUSION Overall, our results indicate that allicin reinforces the ATRA-mediated inhibitory effects on CD44+ and CD117+ melanoma cells and may provide a new approach for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Bahareh Mohammadi Jobani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Biochemistry, Ardabil University of Medical University, Ardabil, Iran; Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Mazani
- Department of Biochemistry, Ardabil University of Medical University, Ardabil, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mohammadzadeh Vardin
- Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Li X, Ni J, Tang Y, Wang X, Tang H, Li H, Zhang S, Shen X. Allicin inhibits mouse colorectal tumorigenesis through suppressing the activation of STAT3 signaling pathway. Nat Prod Res 2018; 33:2722-2725. [DOI: 10.1080/14786419.2018.1465425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xiang Li
- Shanghai Kongjiang Senior High School, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yixin Tang
- Shanghai Kongjiang Senior High School, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Huanhuan Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharmacol Sin 2017; 38:1353-1368. [PMID: 28858299 DOI: 10.1038/aps.2016.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Organosulfur compounds derived from Allium vegetables have long been recognized for various therapeutic effects, including anticancer activity. Allicin, one of the main biologically active components of garlic, shows promise as an anticancer agent; however, instability makes it unsuitable for clinical application. The aim of this study was to investigate the effect of stabilized allicin derivatives on human breast cancer cells in vitro. In this study, a total of 22 stabilized thiosulfinate derivatives were synthesized and screened for their in vitro antiproliferative activities against drug-sensitive (MCF-7) and multidrug-resistant (MCF-7/Dx) human adenocarcinoma breast cancer cells. Assays for cell death, apoptosis, cell cycle progression and mitochondrial bioenergetic function were performed. Seven compounds (4b, 7b, 8b, 13b, 14b, 15b and 18b) showed greater antiproliferative activity against MCF-7/Dx cells than allicin. These compounds were also selective towards multidrug-resistant (MDR) cells, a consequence attributed to collateral sensitivity. Among them, 13b exhibited the greatest anticancer activity in both MCF-7/Dx and MCF-7 cells, with IC50 values of 18.54±0.24 and 46.50±1.98 μmol/L, respectively. 13b altered cellular morphology and arrested the cell cycle at the G2/M phase. Additionally, 13b dose-dependently induced apoptosis, and inhibited cellular mitochondrial respiration in cells at rest and under stress. MDR presents a significant obstacle to the successful treatment of cancer clinically. These results demonstrate that thiosulfinate derivatives have potential as novel anticancer agents and may offer new therapeutic strategies for the treatment of chemoresistant cancers.
Collapse
|
12
|
Chen F, Li H, Wang Y, Gao M, Cheng Y, Liu D, Jia M, Zhang J. Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Farhadi F, Jahanpour S, Hazem K, Aghbali A, Baradran B, Vahid Pakdel SM. Garlic ((Allium sativum)) Fresh Juice Induces Apoptosis in Human Oral Squamous Cell Carcinoma: The Involvement of Caspase-3, Bax and Bcl-2. J Dent Res Dent Clin Dent Prospects 2015; 9:267-73. [PMID: 26889365 PMCID: PMC4753037 DOI: 10.15171/joddd.2015.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/15/2015] [Indexed: 11/09/2022] Open
Abstract
Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents.
Collapse
Affiliation(s)
- Farrokh Farhadi
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Jahanpour
- Dentist, Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kameliya Hazem
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirala Aghbali
- Associate Professor, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradran
- Associate Professor, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mahdi Vahid Pakdel
- Post-graduate Student, Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
15
|
Islam MS, Akhtar MM, Ciavattini A, Giannubilo SR, Protic O, Janjusevic M, Procopio AD, Segars JH, Castellucci M, Ciarmela P. Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: promising options for prevention and treatment of uterine fibroids? Mol Nutr Food Res 2014; 58:1667-84. [PMID: 24976593 DOI: 10.1002/mnfr.201400134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
Uterine leiomyomas (fibroids, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70-80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pressure on the bladder, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 6 billion dollars annually in the United States. Unfortunately, no long-term medical treatments are available. Dysregulation of inflammatory processes are thought to be involved in the initiation of leiomyoma and extracellular matrix deposition, cell proliferation, and angiogenesis are the key cellular events implicated in leiomyoma growth. In modern pharmaceutical industries, dietary phytochemicals are used as source of new potential drugs for many kinds of tumors. Dietary phytochemicals may exert therapeutic effects by interfering with key cellular events of the tumorigenesis process. At present, a negligible number of phytochemicals have been tested as therapeutic agents against fibroids. In this context, our aim was to introduce some of the potential dietary phytochemicals that have shown anti-inflammatory, antiproliferative, antifibrotic, and antiangiogenic activities in different biological systems. This review could be useful to stimulate the evaluation of these phytochemicals as possible therapies for uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Biotechnology and Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang W, Huang Y, Wang JP, Yu XY, Zhang LY. The synergistic anticancer effect of artesunate combined with allicin in osteosarcoma cell line in vitro and in vivo. Asian Pac J Cancer Prev 2014; 14:4615-9. [PMID: 24083713 DOI: 10.7314/apjcp.2013.14.8.4615] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artesunate, extracted from Artemisia annua, has been proven to have anti-cancer potential. Allicin, diallyl thiosulfinate, the main biologically active compound derived from garlic, is also of interest in cancer treatment research. This object of this report was to document synergistic effects of artesunate combined with allicin on osteosarcoma cell lines in vitro and in vivo. METHODS After treatment with artesunate and allicin at various concentrations, the viability of osteosarcoma cells was analyzed by MTT method, with assessment of invasion and motility, colony formation and apoptosis. Western Blotting was performed to determine the expression of caspase-3/9, and activity was also detected after drug treatment. Moreover, in a nude mouse model established with orthotopic xenograft tumors, tumor weight and volume were monitored after drug administration via the intraperitoneal (i.p.) route. RESULTS The viability of osteosarcoma cells in the combination group was significantly decreased in a concentration and time dependent manner; moreover, invasion, motility and colony formation ability were significantly suppressed and the apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement in the combination group. Furthermore, suppression of tumor growth was evident in vivo. CONCLUSION Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Orthopaedic, Wenling City Chinese Medicine Hospital, Wenling, Zhejiang, China E-mail :
| | | | | | | | | |
Collapse
|
17
|
Trio PZ, You S, He X, He J, Sakao K, Hou DX. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food Funct 2014; 5:833-44. [DOI: 10.1039/c3fo60479a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2013; 10:210-29. [PMID: 24311829 PMCID: PMC3847409 DOI: 10.4314/ajtcam.v10i5.2] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medicinal plants have been used in healthcare since time immemorial. Studies have been carried out globally to verify their efficacy and some of the findings have led to the production of plant-based medicines. The global market value of medicinal plant products exceeds $100 billion per annum. This paper discusses the role, contributions and usefulness of medicinal plants in tackling the diseases of public health importance, with particular emphasis on the current strategic approaches to disease prevention. A comparison is drawn between the 'whole population' and 'high-risk' strategies. The usefulness of the common-factor approach as a method of engaging other health promoters in propagating the ideals of medicinal plants is highlighted. The place of medicinal plants in preventing common diseases is further examined under the five core principles of the Primary Health Care (PHC) approach. Medicinal plants play vital roles in disease prevention and their promotion and use fit into all existing prevention strategies. However, conscious efforts need to be made to properly identify, recognise and position medicinal plants in the design and implementation of these strategies. These approaches present interesting and emerging perspectives in the field of medicinal plants. Recommendations are proposed for strategising the future role and place for medicinal plants in disease prevention.
Collapse
Affiliation(s)
- Abayomi Sofowora
- C/O Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|
19
|
Chan JYY, Yuen ACY, Chan RYK, Chan SW. A Review of the Cardiovascular Benefits and Antioxidant Properties of Allicin. Phytother Res 2012; 27:637-46. [DOI: 10.1002/ptr.4796] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/14/2012] [Accepted: 07/15/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Jackie Yan-Yan Chan
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong SAR PR China
| | - Ailsa Chui-Ying Yuen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology; Shenzhen PR China
| | - Robbie Yat-Kan Chan
- Programme of Food Science and Technology, Division of Science and Technology; BNU-HKBU United International College; Zhuhai PR China
| | - Shun-Wan Chan
- Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong SAR PR China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology; Shenzhen PR China
| |
Collapse
|