1
|
Wani MJ, Salman KA, Hashmi MA, Siddiqui S, Moin S. Rutin impedes human low-density lipoprotein from non-enzymatic glycation: A mechanistic insight against diabetes-related disorders. Int J Biol Macromol 2023; 238:124151. [PMID: 36963546 DOI: 10.1016/j.ijbiomac.2023.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Glycation of human low-density protein (LDL) has an essential contribution to cardiovascular diseases. Natural compounds like rutin have been extensively studied in preventing glycation-induced oxidative stress. This study examined rutin's anti-glycation potential with glycated LDL utilizing spectroscopic and in silico methods. Glycated LDL treated with rutin, showed around 80 % inhibition in advanced glycation end-product production. Carbonyl content and lipid peroxidation like assays were used to establish the development of oxidative stress. Rutin was seen to lower the generation of oxidative stress in a dose-dependent manner. Using thioflavin t-test and electron microscopy, rutin was suggested to restore the structural disturbances in glycated LDL. Moreover, CD spectroscopy suggested reinstation of secondary structure of glycated LDL treated with rutin. Mechanistic insights between rutin and LDL were observed through spectroscopic measures. Molecular docking study confirmed the LDL-rutin binding with a binding energy of -10.0 kcal/mol. The rutin-LDL complex was revealed to be highly stable by molecular dynamics simulation, with RMSD, RMSF, Rg, SASA, and the secondary structure of LDL remaining essentially unchanged during the simulation period. Our study suggests that rutin possesses strong anti-glycating properties, which can be useful in therapeutics, as glycated LDL has an important role in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Khushtar Anwar Salman
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Sana Siddiqui
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
2
|
Tamilarasan K, Annapoorani A, Manikandan R, Janarthanan S. Isolation, characterization of galactose-specific lectin from Odoiporus longicollis and its antibacterial and anticancer activities. Int J Biol Macromol 2021; 183:1119-1135. [PMID: 33974923 DOI: 10.1016/j.ijbiomac.2021.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Lectins are renowned hemagglutinins and multivalent proteins with a well known quality for sugar-binding specificity that participate significantly in invertebrate defense functions. Studies on biological activity of lectin from coleopteran insect are very scarce. In this study, lectin from the hemolymph in the grub of banana pest, Odoiporus longicollis was subjected to purification, biochemical and functional characterizations. The lectin was purified by PEG precipitation and ion-exchange chromatography using Q-Sepharose as a matrix. The purified lectin showed hemagglutination activity against rat erythrocytes, heat-labile, cation independent and insensitive to EDTA. Further, the carbohydrate affinity of this lectin was found with mannitol, adonitol, L-arabinose, L-rhamnose, D-galactose and sorbitol. The native form of purified lectin was calculated as 360 kDa by FPLC system. Denatured gel electrophoresis of the purified lectin consisted of five distinct polypeptides with molecular weights approximately 160, 60, 52, 40 and 38 kDa, respectively. The amino acid sequences obtained through peptide mass fingerprinting analysis exhibited homologies to the known conserved regions of galactose binding lectins. Further, the purified lectin exhibited bacterial inhibition with LPS from Serratia marcescens. In addition, isolated lectin also exerted bacterial agglutination, antibacterial and anti-proliferative activity against Mycobacterium smegmatis, Bacillus pumilus and Neuro 2a cell line, respectively.
Collapse
Affiliation(s)
| | - Angusamy Annapoorani
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Ramar Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
3
|
Nouadi B, Ezaouine A, El Messal M, Blaghen M, Bennis F, Chegdani F. Prediction of Anti-COVID 19 Therapeutic Power of Medicinal Moroccan Plants Using Molecular Docking. Bioinform Biol Insights 2021; 15:11779322211009199. [PMID: 33888980 PMCID: PMC8040561 DOI: 10.1177/11779322211009199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/21/2021] [Indexed: 01/30/2023] Open
Abstract
The emerging pathogen SARS-CoV2 causing coronavirus disease 2019 (COVID-19) is a global public health challenge. To the present day, COVID-19 had affected more than 40 million people worldwide. The exploration and the development of new bioactive compounds with cost-effective and specific anti-COVID 19 therapeutic power is the prime focus of the current medical research. Thus, the exploitation of the molecular docking technique has become essential in the discovery and development of new drugs, to better understand drug-target interactions in their original environment. This work consists of studying the binding affinity and the type of interactions, through molecular docking, between 54 compounds from Moroccan medicinal plants, dextran sulfate and heparin (compounds not derived from medicinal plants), and 3CLpro-SARS-CoV-2, ACE2, and the post fusion core of 2019-nCoV S2 subunit. The PDB files of the target proteins and prepared herbal compounds (ligands) were subjected for docking to AutoDock Vina using UCSF Chimera, which provides a list of potential complexes based on the criteria of form complementarity of the natural compound with their binding affinities. The results of molecular docking revealed that Taxol, Rutin, Genkwanine, and Luteolin-glucoside have a high affinity with ACE2 and 3CLpro. Therefore, these natural compounds can have 2 effects at once, inhibiting 3CLpro and preventing recognition between the virus and ACE2. These compounds may have a potential therapeutic effect against SARS-CoV2, and therefore natural anti-COVID-19 compounds.
Collapse
Affiliation(s)
- Badreddine Nouadi
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkarim Ezaouine
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame El Messal
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Blaghen
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences El Jadida, Chouaïb Doukkali University, El Jadida, Morocco
| | - Faiza Bennis
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
4
|
In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Braz J Microbiol 2017; 49:296-302. [PMID: 29037505 PMCID: PMC5914197 DOI: 10.1016/j.bjm.2017.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 11/25/2016] [Accepted: 02/11/2017] [Indexed: 11/21/2022] Open
Abstract
The main objective of this study was to demonstrate the antimicrobial potential of the crude extract and fractions of Chenopodium ambrosioides L., popularly known as Santa-Maria herb, against microorganisms of clinical interest by the microdilution technique, and also to show the chromatographic profile of the phenolic compounds in the species. The Phytochemical screening revealed the presence of cardiotonic, anthraquinone, alkaloids, tannins and flavonoids. The analysis by HPLC–DAD revealed the presence of rutin in the crude extract (12.5 ± 0.20 mg/g), ethyl acetate (16.5 ± 0.37 mg/g) and n-butanol (8.85 ± 0.11 mg/g), whereas quercetin and chrysin were quantified in chloroform fraction (1.95 ± 0.04 and 1.04 ± 0.01 mg/g), respectively. The most promising results were obtained with the ethyl acetate fraction, which inhibited a greater number of microorganisms and presented the lowest values of MIC against Staphylococcus aureus and Enterococcus faecalis (MIC = 0.42 mg/mL), Pseudomonas aeruginosa (MIC = 34.37 mg/mL), Paenibacillus apiarus (MIC = 4.29 mg/mL) and Paenibacillus thiaminolyticus (MIC = 4.29 mg/mL). Considering mycobacterial inhibition, the best results were obtained by chloroform fraction against M. tuberculosis, M. smegmatis, and M. avium (MIC ranging from 156.25 to 625 μg/mL). This study proves, in part, that the popular use of C. ambrosioides L. can be an effective and sustainable alternative for the prevention and treatment of diseases caused by various infectious agents.
Collapse
|
5
|
dos Santos Alves CF, Bonez PC, de Souza MDE, da Cruz RC, Boligon AA, Piana M, Brum TF, Rossi GG, Jesus RDS, Grando TH, Monteiro SG, Anraku de Campos MM, Giongo JL, Vianna Santos RC. Antimicrobial, antitrypanosomal and antibiofilm activity of Equisetum hyemale. Microb Pathog 2016; 101:119-125. [DOI: 10.1016/j.micpath.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023]
|
6
|
Abstract
The contemporary scientific community has presently recognized flavonoids to be a unique class of therapeutic molecules due to their diverse therapeutic properties. Of these, rutin, also known as vitamin P or rutoside, has been explored for a number of pharmacological effects. Tea leaves, apples, and many more possess rutin as one of the active constituents. Today, rutin has been observed for its nutraceutical effect. The present review highlights current information and health-promoting effects of rutin. Along with this, safety pharmacology issues and SAR of the same have also been discussed.
Collapse
|
7
|
Farag MA, Abdelfattah MS, Badr SE, Wessjohann LA. Profiling the chemical content of Ficus lyrata extracts via UPLC-PDA-qTOF-MS and chemometrics. Nat Prod Res 2014; 28:1549-56. [DOI: 10.1080/14786419.2014.926353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini 11562, Egypt
| | | | - Sherif E.A. Badr
- Regional Center for Food and Feed (RCFF), Agriculture Researchers Center, Giza, Egypt
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany
| |
Collapse
|