1
|
Bing H, Qi C, Gu J, Zhao T, Yu X, Cai Y, Zhang Y, Li A, Wang X, Zhao J, Xiang W. Isolation and identification of NEAU-CP5: A seed-endophytic strain of B. velezensis that controls tomato bacterial wilt. Microb Pathog 2024; 192:106707. [PMID: 38777241 DOI: 10.1016/j.micpath.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.
Collapse
Affiliation(s)
- Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Cuiping Qi
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Tianxin Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaoyan Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yang Cai
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yance Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Ailin Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
2
|
dos Santos JDN, João SA, Martín J, Vicente F, Reyes F, Lage OM. iChip-Inspired Isolation, Bioactivities and Dereplication of Actinomycetota from Portuguese Beach Sediments. Microorganisms 2022; 10:1471. [PMID: 35889190 PMCID: PMC9319460 DOI: 10.3390/microorganisms10071471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Oceans hold a stunning number of unique microorganisms, which remain unstudied by culture-dependent methods due to failures in establishing the right conditions for these organisms to grow. In this work, an isolation effort inspired by the iChip was performed using marine sediments from Memoria beach, Portugal. The isolates obtained were identified by 16S rRNA gene analysis, fingerprinted using BOX-PCR and ERIC-PCR, searched for the putative presence of secondary metabolism genes associated with polyketide synthase I (PKS-I) and non-ribosomal peptide synthetases (NRPS), screened for antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and had bioactive extracts dereplicated by LC/HRMS. Of the 158 isolated strains, 96 were affiliated with the phylum Actinomycetota, PKS-I and NRPS genes were detected in 53 actinomycetotal strains, and 11 proved to be bioactive (10 against E. coli, 1 against S. aureus and 1 against both pathogens). Further bioactivities were explored using an "one strain many compounds" approach, with six strains showing continued bioactivity and one showing a novel one. Extract dereplication showed the presence of several known bioactive molecules and potential novel ones in the bioactive extracts. These results indicate the use of the bacteria isolated here as sources of new bioactive natural products.
Collapse
Affiliation(s)
- José Diogo Neves dos Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Susana Afonso João
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Croitoru A, Babin M, Myllykallio H, Gondry M, Aleksandrov A. Cyclodipeptide Synthases of the NYH Subfamily Recognize tRNA Using an α-Helix Enriched with Positive Residues. Biochemistry 2020; 60:64-76. [PMID: 33331769 DOI: 10.1021/acs.biochem.0c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclodipeptide synthases (CDPSs) perform nonribosomal protein synthesis using two aminoacyl-tRNA substrates to produce cyclodipeptides. At present, there are no structural details of the CDPS:tRNA interaction available. Using AlbC, a CDPS that produces cyclo(l-Phe-l-Phe), the interaction between AlbC and its Phe-tRNA substrate was investigated. Simulations of models of the AlbC:tRNA complex, proposed by rigid-body docking or homology modeling, demonstrated that interactions with residues of an AlbC α-helix, α4, significantly contribute to the free energy of binding of AlbC to tRNA. Individual residue contributions to the tRNA binding free energy of the discovered binding mode explain well the available biochemical data, and the results of in vivo assay experiments performed in this work and guided by simulations. In molecular dynamics simulations, the phenylalanyl group predominantly occupied the two positions observed in the experimental structure of AlbC in the dipeptide intermediate state, suggesting that tRNAs of the first and second substrates interact with AlbC in a similar manner. Overall, given the high degree of sequence and structural similarity among the members of the CDPS NYH protein subfamily, the mechanism of the protein:tRNA interaction is expected to be pertinent to a wide range of proteins interacting with tRNA.
Collapse
Affiliation(s)
- Anastasia Croitoru
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| | - Morgan Babin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
4
|
Phi Thi D, Doan Thi Mai H, Cao DD, Vu Thi Q, Nguyen MA, Le Thi HM, Tran DT, Chau VM, Pham VC. Novel 1,3-Benzodioxole From Marine-Derived Actinomycete in East Vietnam Sea. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Analysis of an antimicrobial extract from the culture broth of the marine-derived actinomycete Streptomyces sp. G261 led to the isolation of a new 1,3-benzodioxole derivative (1), together with 10 known compounds 2-11. The actinomycete strain G261 was isolated from sediment, collected at Cu Lao Cham, Quang Nam in Vietnam. The taxonomic identification of the strain G261 was achieved by analysis of 16SrRNA gene sequences. On the basis of morphological and phylogenetic evidence, the actinomycete strain G261 was assigned to the genus Streptomyces. The structures of the isolated compounds were established by their spectral data analysis, including mass spectrometry, 1-dimensional nuclear magnetic resonance (1D-NMR), and 2D-NMR. The structure of 1 was confirmed by comparison of the calculated with experimental13C NMR data. Compound 1 exhibited antimicrobial activity against Enterococcus faecalis and Staphylococcus aureus with minimum inhibitory concentration values of 128 and 256 µg/mL, respectively. Whereas, compound 1 had a weak inhibition when tested against 4 cancer cell lines, KB, LU-1, HepG-2, and MCF-7.
Collapse
Affiliation(s)
- Dao Phi Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Huong Doan Thi Mai
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Duc Danh Cao
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Quyen Vu Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Mai Anh Nguyen
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hong Minh Le Thi
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Dang Thach Tran
- Depatment of Applied Science and Technology, University Industry Vinh, Vietnam
| | - Van Minh Chau
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Van Cuong Pham
- Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
5
|
Chang F, Wang S, Li C, Lu Y, Vanson Liu S, Chen C, Wu Y, Cheng Y. Natural Products from
Diaporthe arecae
with Anti‐Angiogenic Activity. Isr J Chem 2019. [DOI: 10.1002/ijch.201800158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fang‐Rong Chang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medicine, Mackay Medical College New Taipei city 252 Taiwan
| | - Chi‐Ying Li
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Yi Lu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shang‐Yin Vanson Liu
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Ching‐Yeu Chen
- Department of Physical TherapyTzu-Hui Institute of Technology Pingtung 926 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
6
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
7
|
Ben Haj Salah K, Legrand B, Bibian M, Wenger E, Fehrentz JA, Denoyelle S. Synthesis of [1,2,4]Triazolo[4,3- a]piperazin-6-ones: An Approach to the Triazole-Fused Ketopiperazine Scaffold. Org Lett 2018; 20:3250-3254. [PMID: 29763330 DOI: 10.1021/acs.orglett.8b01112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereoconservative synthesis to access the triazole-fused ketopiperazine (TKP) scaffold is presented. This underexplored platform offers a wide range of structural modulations with several points of diversity and chiral centers. A series of [1,2,4]triazolo[4,3- a]piperazin-6-ones was synthesized from optically pure dipeptides. The methodology was then successfully applied to access the pyrrolo[1,2- a]triazolo[3,4- c]piperazin-6-one tricycle. Importantly, the crystal structures of representative TKPs confirmed that the configuration of the chiral centers was controlled during the synthetic route and facilitated description of the orientation of the substituents depending on their nature and position on the TKP scaffold.
Collapse
Affiliation(s)
- Khoubaib Ben Haj Salah
- IBMM, Université de Montpellier , CNRS, ENSCM, Faculté de Pharmacie , 34093 Montpellier Cedex 5 , France
| | - Baptiste Legrand
- IBMM, Université de Montpellier , CNRS, ENSCM, Faculté de Pharmacie , 34093 Montpellier Cedex 5 , France
| | - Mathieu Bibian
- IBMM, Université de Montpellier , CNRS, ENSCM, Faculté de Pharmacie , 34093 Montpellier Cedex 5 , France
| | - Emmanuel Wenger
- CRM2 (UMR UL-CNRS 7036), Faculté des Sciences et Technologies , Université de Lorraine , 54506 Vandoeuvre-lès-Nancy , France
| | - Jean-Alain Fehrentz
- IBMM, Université de Montpellier , CNRS, ENSCM, Faculté de Pharmacie , 34093 Montpellier Cedex 5 , France
| | - Séverine Denoyelle
- IBMM, Université de Montpellier , CNRS, ENSCM, Faculté de Pharmacie , 34093 Montpellier Cedex 5 , France
| |
Collapse
|
8
|
Mishra AK, Choi J, Choi SJ, Baek KH. Cyclodipeptides: An Overview of Their Biosynthesis and Biological Activity. Molecules 2017; 22:molecules22101796. [PMID: 29065531 PMCID: PMC6151668 DOI: 10.3390/molecules22101796] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Cyclodipeptides (CDP) represent a diverse family of small, highly stable, cyclic peptides that are produced as secondary functional metabolites or side products of protein metabolism by bacteria, fungi, and animals. They are widespread in nature, and exhibit a broad variety of biological and pharmacological activities. CDP synthases (CDPSs) and non-ribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of the CDP core structure, which is further modified by tailoring enzymes often associated with CDP biosynthetic gene clusters. In this review, we provide a comprehensive summary of CDP biosynthetic pathways and modifying enzymes. We also discuss the biological properties of some known CDPs and their possible applications in metabolic engineering.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Jaehyuk Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Seong-Jin Choi
- Department of Biotechnology, Daegu Catholic University, Gyeongsan 38430, Korea.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|