1
|
Thompson TP, Gilmore BF. Exploring halophilic environments as a source of new antibiotics. Crit Rev Microbiol 2024; 50:341-370. [PMID: 37079280 DOI: 10.1080/1040841x.2023.2197491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
Microbial natural products from microbes in extreme environments, including haloarchaea, and halophilic bacteria, possess a huge capacity to produce novel antibiotics. Additionally, enhanced isolation techniques and improved tools for genomic mining have expanded the efficiencies in the antibiotic discovery process. This review article provides a detailed overview of known antimicrobial compounds produced by halophiles from all three domains of life. We summarize that while halophilic bacteria, in particular actinomycetes, contribute the vast majority of these compounds the importance of understudied halophiles from other domains of life requires additional consideration. Finally, we conclude by discussing upcoming technologies- enhanced isolation and metagenomic screening, as tools that will be required to overcome the barriers to antimicrobial drug discovery. This review highlights the potential of these microbes from extreme environments, and their importance to the wider scientific community, with the hope of provoking discussion and collaborations within halophile biodiscovery. Importantly, we emphasize the importance of bioprospecting from communities of lesser-studied halophilic and halotolerant microorganisms as sources of novel therapeutically relevant chemical diversity to combat the high rediscovery rates. The complexity of halophiles will necessitate a multitude of scientific disciplines to unravel their potential and therefore this review reflects these research communities.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Rammali S, Rahim A, El Aalaoui M, Bencharki B, Dari K, Habach A, Abdeslam L, Khattabi A. Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Sci Rep 2024; 14:3359. [PMID: 38336871 PMCID: PMC10858231 DOI: 10.1038/s41598-024-53801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Research on microorganisms in various biotopes is required to identify new, natural potent molecules. These molecules are essential to control the development of multi-drug resistance (MDR). In the present study, a Streptomyces sp., namely SCJ, was isolated from a soil sample collected from a Moroccan garden. SCJ isolate was identified on the basis of a polyphasic approach, which included cultural, micro-morphological, biochemical, and physiological characteristics. The sequence of the 16S rRNA gene of the SCJ strain showed 99.78% similarity to strains of Streptomyces coeruleofuscus YR-T (KY753282.1). The preliminary screening indicated that the SCJ isolate exhibited activity against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, Pseudomonas aeruginosa ATCC 27,853, as well as various other clinical MDR bacteria and five phytopathogenic fungi. The ethyl acetate extract of the isolated strain demonstrated highly significant (p < 0.05) antimicrobial activity against multi-resistant bacteria and phytopathogenic fungi. The absorption spectral analysis of the ethyl acetate extract of the SCJ isolate obtained showed no absorption peaks characteristic of polyene molecules. Moreover, no hemolytic activity against erythrocytes was observed in this extract. GC-MS analysis of the ethyl acetate extract of the SCJ isolate revealed the presence of 9 volatile compounds including 3,5-Dimethylpyrazole, and pyrrolizidine derivatives (Pyrrolo[1,2-a]pyrazine 1,4-dione, hexahydro-3-(2-methylpropyl)), which could potentially explain the antimicrobial activity demonstrated in this study.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco.
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km From Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aicha Habach
- Biotechnology Unit, National Institute of Agronomic Research of Rabat, Av. Annasr, 10000, Rabat, Morocco
| | - Lamiri Abdeslam
- Applied Chemistry & Environment Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| |
Collapse
|
3
|
Ibrahim AH, Attia EZ, Hofny HA, Alsenani F, Zayed A, Rateb ME, Abdelmohsen UR, Desoukey SY, Fouad MA, Kamel MS. Metabolic profiling and biological potential of the marine sponge associated Nocardiopsis sp. UR67 along with docking studies. Nat Prod Res 2023; 37:3531-3537. [PMID: 35666810 DOI: 10.1080/14786419.2022.2084396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
This work was performed to dig into the phytochemical composition and bioactivities of Nocardiopsis sp. UR67 associated with the marine sponge Callyspongia sp. It was fermented in suspension and immobilised in calcium alginate bead cultures. The ethyl acetate extracts, afforded from the broth in each case named EG-49 and J-48g, respectively, revealed 16 chemical principles mostly belonging to polyketides, macrolides, and peptides. EG-49 and J-48g displayed anti-Candida albicans activity with IC50 values of 8.1 and 8.3 µg/mL, and a substantial cytotoxic effect against lung adenocarcinoma H1650 at IC50 12.6 and 13.7 µg/mL, respectively. However, only EG-49 exhibited a noteworthy anti-trypanosomal activity at 7.5 µg/mL. Molecular docking of the characterised compounds against Trypanosoma brucei trypanothione reductase demonstrated the highest binding models of griseochelin-methyl ester (9) and filipin-II (11), which drew considerable significance of the metabolites derived from Nocardiopsis sp. UR67 developing potential T. brucei trypanothione reductase inhibitors.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Hofny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mostafa Ahmed Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Egypt
| |
Collapse
|
4
|
Boudjelal F, Zitouni A, Bouras N, Spröer C, Klenk HP, Smaoui S, Mathieu F. Rare Halophilic Nocardiopsis from Algerian Saharan Soils as Tools for Biotechnological Processes in Pharmaceutical Industry. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1061176. [PMID: 37284028 PMCID: PMC10241594 DOI: 10.1155/2023/1061176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
The Sahara Desert, one of the most extreme ecosystems in the planet, constitutes an unexplored source of microorganisms such as mycelial bacteria. In this study, we investigated the diversity of halophilic actinobacteria in soils collected from five regions of the Algerian Sahara. A total of 23 halophilic actinobacterial strains were isolated by using a humic-vitamin agar medium supplemented with 10% NaCl. The isolated halophilic strains were subjected to taxonomic analysis using a polyphasic approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy), and phylogenetic analyses. The isolates showed abundant growth in CMA (complex medium agar) and TSA (tryptic soy agar) media containing 10% NaCl, and chemotaxonomic characteristics were consistent with their assignment to the genus Nocardiopsis. Analysis of the 16S rRNA sequence of 23 isolates showed five distinct clusters and a similarity level ranging between 98.4% and 99.8% within the Nocardiopsis species. Comparison of their physiological characteristics with the nearest species showed significant differences with the closely related species. Halophilic Nocardiopsis isolated from Algerian Sahara soil represents a distinct phyletic line suggesting a potential new species. Furthermore, the isolated strains of halophilic Nocardiopsis were screened for their antagonistic properties against a broad spectrum of microorganisms by the conventional agar method (agar cylinders method) and found to have the capacity to produce bioactive secondary metabolites. Except one isolate (AH37), all isolated Nocardiopsis showed moderate to high biological activities against Pseudomonas syringae and Salmonella enterica, and some isolates showed activities against Agrobacterium tumefaciens, Serratia marcescens, and Klebsiella pneumoniae. However, no isolates were active against Bacillus subtilis, Aspergillus flavus, or Aspergillus niger. The obtained finding implies that the unexplored extreme environments such as the Sahara contain many new bacterial species as a novel drug source for medical and industrial applications.
Collapse
Affiliation(s)
- Farida Boudjelal
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
- Faculty of Biological Sciences (FSB), University of Sciences and Technologies Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Noureddine Bouras
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
- Laboratoire de Valorisation et Conservation des Écosystèmes Arides (LVCEA), Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, Ghardaia, Algeria
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177 3018 Sfax, Tunisia
| | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, Université de Toulouse, Avenue de l'Agrobiopôle, 31326 Castanet-Tolosan, France
| |
Collapse
|
5
|
Menasria T, Monteoliva-Sánchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J Basic Microbiol 2022; 62:1202-1215. [PMID: 35945171 DOI: 10.1002/jobm.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/18/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.
Collapse
Affiliation(s)
- Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Mabrouka Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Leyla Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences University of Batna, Batna, Algeria
| | - Mourad Boukoucha
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Genus Nocardiopsis: A Prolific Producer of Natural Products. Mar Drugs 2022; 20:md20060374. [PMID: 35736177 PMCID: PMC9231205 DOI: 10.3390/md20060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Collapse
|
7
|
Chen YY, Chen LY, Chen PJ, El-Shazly M, Peng BR, Chen YC, Su CH, Su JH, Sung PJ, Yen PT, Wang LS, Lai KH. Probing Anti-Leukemic Metabolites from Marine-Derived Streptomyces sp. LY1209. Metabolites 2022; 12:320. [PMID: 35448507 PMCID: PMC9025307 DOI: 10.3390/metabo12040320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The unmet need for specific anti-leukemic agents for the treatment of acute lymphoblastic leukemia led us to screen a variety of marine-derived bacteria. The fermentation broth extract of Streptomyces sp. LY1209 exhibited the most potent anti-proliferative effect against Molt 4 leukemia cells. A chromatographic anti-proliferative profiling approach was applied to characterize the metabolites with bioactive potential. Among all the metabolites, the major anti-leukemic constituents were staurosporine and a series of diketopiperazines (DKPs), including one novel and two known DKPs identified from nature for the first time. The structures of these compounds were identified using extensive spectroscopic analysis. The anti-proliferative potential of these metabolites against the Molt 4 cancer cell line was also determined. According to the in silico analysis utilizing a chemical global positioning system for natural products (ChemGPS-NP), it was suggested that these DKPs are potential anti-microtubule and alkylating agents, while staurosporine was proposed to be a tyrosine kinase inhibitor. Our findings not only identified a series of anti-proliferative metabolites, but also suggested a strategic workflow for the future discovery of natural product drug leads.
Collapse
Affiliation(s)
- You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan; (Y.-Y.C.); (J.-H.S.); (P.-J.S.)
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 82445, Taiwan;
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
- Department of Pharmaceutical Biology, German University in Cairo, Cairo 11432, Egypt
| | - Bo-Rong Peng
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan;
| | - Yu-Cheng Chen
- Sepsis Research Center, Research Center of Tropical Medicine and Infectious Disease, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chun-Han Su
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Jui-Hsin Su
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan; (Y.-Y.C.); (J.-H.S.); (P.-J.S.)
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan;
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan; (Y.-Y.C.); (J.-H.S.); (P.-J.S.)
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan;
- Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Pei-Tzu Yen
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan;
| | - Lung-Shuo Wang
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan;
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
9
|
Axenov-Gribanov DV, Morgunova MM, Vasilieva UA, Gamaiunov SV, Dmitrieva (Krasnova) ME, Pereliaeva EV, Belyshenko AY, Luzhetskyy AN. Composition of nutrient media and temperature of cultivation imposes effect on the content of secondary metabolites of Nocardiopsis sp. isolated from a Siberian Cave. 3 Biotech 2021; 11:386. [PMID: 34350091 PMCID: PMC8319253 DOI: 10.1007/s13205-021-02926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Growth of human population leads to many global and medical problems. The problems include the crisis of health, antibiotic resistance, drug discovery, etc. Increasing antimicrobial resistance of microorganisms results in the need to screen natural products (incl. antibiotics and antimicrobial peptides) and their producers in different ecological niches. The purpose of this study was to estimate antibiotic activity and biotechnological potential of rare actinobacteria Nocardiopsis sp. The strain was isolated from Okhotnichya cave located in Siberia. Here, we cultivated the strain at 3 temperature modes (13 °C, 28 °C, 37 °C) in 11 liquid nutrient (rich and poor) media. Using modern assays of liquid chromatography and high-resolution mass spectrometry, we estimated the content and number of produced natural products, distribution of their masses, and potential rate of novel secondary metabolites. We demonstrated that minimal nutrient media with l-asparagine and SM25 media with malt extract were less productive at current experimental parameters. As it was shown, this strain was characterized by antibiotic properties against Bacillus subtilis when cultivated at 28 °C. Also, weak antibiotic activity of crude extracts was found in strain cultivation at 13 °C. Also, we detected a high number of novel amphiphilic and hydrophobic NPs produced by this strain. We demonstrated both the influence of the nutrient media composition and cultivation temperature on biosynthetic capabilities of rare strain Nocardiopsis sp. Finally, high level of natural products that were predicted as novel confirms high biotechnological value of rare genera of Actinobacteria that could be explained by the evolution of microorganisms in the isolated environment of cave ecosystem.
Collapse
Affiliation(s)
| | | | - Ulyana A. Vasilieva
- Irkutsk State University, 1 Karl Marx St, 664003 Irkutsk, Russia
- Siberian Institute of Plant Physiology and Biochemistry, 132 Lermontov Str, 664033 Irkutsk, Russia
| | - Stanislav V. Gamaiunov
- Irkutsk State University, 1 Karl Marx St, 664003 Irkutsk, Russia
- Speleology Club Arabica, 11 Berezovaya Rosha Str, 664043 Irkutsk, Russia
| | | | | | | | - Andriy N. Luzhetskyy
- Pharmaceutical Biotechnology, University of Saarland, Campus, C2.3, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Campus, C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Chen CM, Chen WH, Pang XY, Liao SR, Wang JF, Lin XP, Yang B, Zhou XF, Luo XW, Liu YH. Pyrrolyl 4-quinolone alkaloids from the mangrove endophytic fungus Penicillium steckii SCSIO 41025: Chiral resolution, configurational assignment, and enzyme inhibitory activities. PHYTOCHEMISTRY 2021; 186:112730. [PMID: 33740577 DOI: 10.1016/j.phytochem.2021.112730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Six undescribed 4-quinolone alkaloids, including four racemic mixtures, (±)-oxypenicinolines A-D, and two related ones, penicinolines F and G, together with seven known analogues, were isolated from the mangrove-derived fungus Penicillium steckii SCSIO 41025 (Trichocomaceae). The racemates were separated by HPLC using chiral columns. Their structures including absolute configurations were elucidated by extensive spectroscopic analysis, electronic circular dichroism (ECD) experiments, and single-crystal X-ray diffraction analysis. Structurally, (±)-oxypenicinolines A-D shared with an unusual 6/6/5/5 tetracyclic system incorporating a rare tetrahydro-pyrrolyl moiety. A plausible biosynthetic pathway for pyrrolyl 4-quinolone alkaloids is proposed. (±)-oxypenicinoline A and quinolactacide displayed α-glucosidase inhibitory activity with the IC50 values of 317.8 and 365.9 μΜ, respectively, which were more potent than that of acarbose (461.0 μM). Additionally, penicinoline and penicinoline E showed weak inhibitions toward acetylcholinesterase (AChE).
Collapse
Affiliation(s)
- Chun-Mei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei-Hao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Yan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Sheng-Rong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jun-Feng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Xiu-Ping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Xue-Feng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Xiao-Wei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Yong-Hong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
11
|
Cheng JC, Liaw CC, Lin MK, Chen CJ, Chao CL, Chao CH, Kuo YH, Chiu YP, Peng YS, Huang HC. Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules 2020; 25:molecules25194427. [PMID: 32993192 PMCID: PMC7582473 DOI: 10.3390/molecules25194427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Dodder (Cuscuta spp.) is a parasitic weed damaging many plants and agricultural production. The native obligate parasite Cuscuta japonica Choisy (Japanese dodder) parasitizes Dimocarpus longans Lour., Ficus septica Burm. F., Ficus microcarpa L.f., Mikania micrantha H.B.K. and Melia azedarach Linn, respectively. Five Japanese dodders growing on different plants exhibit slightly different metabolites and amounts which present different pharmacological effects. Among these plants, a significant antiviral activity against influenza A virus (IAV) was found in Japanese dodder parasitizing on D. longans Lour. (CL). To further explore methanol extract components in Japanese dodder (CL), four undescribed aromatic glycosides, cuscutasides A–D (compounds 1–4) were isolated, together with twenty-six known compounds 5–30. The chemical structures of 1–4 were elucidated using a combination of spectroscopic techniques. The eighteen isolated compounds were evaluated for antiviral activity against IAV activity. Among them, 1-monopalmitin (29) displayed potent activity against influenza A virus (A/WSN/1933(H1N1)) with EC50 2.28 ± 0.04 μM and without noteworthy cytotoxicity in MDCK cells. The interrupt step of 29 on the IAV life cycle was determined. These data provide invaluable information for new applications for this otherwise harmful weed.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan;
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Chien-Liang Chao
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan;
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yen-Po Chiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Yu-Shin Peng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
- Master Program for Food and Drug Safety, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5211)
| |
Collapse
|
12
|
André A, Touré AK, Stien D, Eparvier V. 2,5-diketopiperazines mitigate the amount of advanced glycation end products accumulated with age in human dermal fibroblasts. Int J Cosmet Sci 2020; 42:596-604. [PMID: 32767373 DOI: 10.1111/ics.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/29/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Glycation is a common non-enzymatic reaction between proteins and sugars, resulting in the formation of advanced glycation end products (AGEs) in the human body. As can be seen in diabetic patients, the accumulation of AGEs in the skin has aesthetic consequences (wrinkles, brown spots and yellowish complexion). Therefore, the objective of this work was to find compounds isolated from natural sources that could eliminate the final AGEs accumulated in the skin with ageing. METHODS AND RESULTS A preliminary screening performed on a bank of microbial extracts and pure compounds showed that 2,5-Diketopiperazines (DKPs), as well as the extract of Sphingobacterium sp (SNB-CN13), reduced the presence of AGEs in fibroblasts by -28% and -23%, respectively. In this article, we present the dereplication approach used to reveal the presence of 26 different DKPs in the crude extract of Sphingobacterium sp. Bioguided fractionation has led to the isolation of 12 of them, whose identity has been confirmed by HRMS and NMR. A green synthesis approach has been developed to synthesize 3 symmetrical DKPs. The biological activity of all DKPs was evaluated by the development of an in vitro test using immunocytochemistry to reveal the presence of AGE carboxymethyl-lysine in human dermal fibroblasts. CONCLUSION Our work shows for the first time that DKPs decrease the amount of carboxymethyl-lysine AGE in elderly human dermal fibroblasts grown in vitro. Therefore, diketopiperazines can be considered as compounds of interest for dermatological and cosmetic applications with an anti-ageing aim.
Collapse
Affiliation(s)
- A André
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France.,Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| | - A K Touré
- Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| | - D Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, USR 3579, Banyuls-sur-mer, 66650, France
| | - V Eparvier
- Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| |
Collapse
|
13
|
Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep 2020; 38:24-82. [PMID: 32672280 DOI: 10.1039/d0np00021c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: Early 2008 until the end of 2019Microorganisms which survive (extreme-tolerant) or even prefer (extremophilic) living at the limits of pH, temperature, salinity and pressure found on earth have proven to be a rich source of novel structures. In this update we summarise the wide variety of new molecules which have been isolated from extremophilic and extreme-tolerant microorganisms since our original 2009 review, highlighting the range of bioactivities these molecules have been reported to possess.
Collapse
Affiliation(s)
- Zoe E Wilson
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | |
Collapse
|
14
|
Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar Drugs 2019; 18:md18010033. [PMID: 31906001 PMCID: PMC7024382 DOI: 10.3390/md18010033] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022] Open
Abstract
The organisms thriving under extreme conditions better than any other organism living on Earth, fascinate by their hostile growing parameters, physiological features, and their production of valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for therapeutic applications. As along as the microbiota is being approached by massive sequencing, novel insights are revealing the environmental conditions on which the compounds are produced in the microbial community without more stress than sharing the same substratum with their peers, the salt. In this review are reported the molecules described and produced by halophilic microorganisms with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these molecules, the urgent need to introduce alternative lead compounds and the current aspects on the exploitation and its limitations are discussed.
Collapse
Affiliation(s)
- Paulina Corral
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Mohammad A. Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6955, Iran;
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556765
| |
Collapse
|
15
|
Siddharth S, Rai V R. Isolation and characterization of bioactive compounds with antibacterial, antioxidant and enzyme inhibitory activities from marine-derived rare actinobacteria, Nocardiopsis sp. SCA21. Microb Pathog 2019; 137:103775. [PMID: 31600541 DOI: 10.1016/j.micpath.2019.103775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/20/2023]
Abstract
A rare actinobacteria strain designated SCA21, producing bioactive metabolites was isolated from marine sediment of Havelock Island, Andaman and Nicobar Islands, India. Analysis of 16S rRNA sequences suggested that the strain SCA21 belonged to the genus Nocardiopsis. Chemical investigation of the fermentation broth led to the isolation of two pure bioactive compounds (1-2). Compound 1: 4-bromophenol, a bromophenol derivative; Compound 2: Bis (2-ethylhexyl) phthalate, a phthalate ester. The structure of compound 1 and 2 were elucidated by the detailed analysis of FT-IR, HR-ESI-MS, 1D and 2D NMR, along with literature data analysis. The isolated metabolites were evaluated for enzyme inhibition activity against α-glucosidase and α-amylase, free radical scavenging activity against DPPH and ABTS radicals, metal chelating and antibacterial activity against clinical pathogens. 1 and 2 exhibited remarkable enzyme inhibitory activities against α-glucosidase. However, Compound 2 was found less active against α-amylase. They showed significant free radical scavenging activity against DPPH and ABTS radicals. In addition, except the strain Salmonella typhi ATCC 25241 and Listeria cytogens ATCC 13932, 1 and 2 showed broad spectrum inhibitory activity against MRSA ATCC NR-46171, MRSA ATCC-46071, Klebsiella pneumonia ATCC 13883, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 12600. In conclusion, to best of our knowledge these findings are the first report of isolation of 4-bromophenol and Bis (2-ethylhexyl) phthalate from genus Nocardiopsis, thus suggesting that rare actinomycetes are promising source of therapeutically important bioactive metabolites.
Collapse
Affiliation(s)
- Saket Siddharth
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Ravishankar Rai V
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore, 570006, India.
| |
Collapse
|
16
|
Van Hieu T, Ngan TB, Huong DTM, Quyen VT, Minh LTH, Murphy BT, Van Cuong P. Secondary metabolites from marine actinomycete Streptomyces
sp. G330. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tran Van Hieu
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Truong Bich Ngan
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Doan Thi Mai Huong
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
- Graduate University of Science and Technology; VAST, 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Vu Thi Quyen
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Le Thi Hong Minh
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| | - Brian T Murphy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy; University of Illinois at Chicago, 833 South Wood Street (MC 781), Room 539; Chicago IL 60612-7231 USA
| | - Pham Van Cuong
- Institue of Marine Biochemistry; Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
- Graduate University of Science and Technology; VAST, 18 Hoang Quoc Viet, Cau Giay; Hanoi 100000 Viet Nam
| |
Collapse
|
17
|
Chang F, Wang S, Li C, Lu Y, Vanson Liu S, Chen C, Wu Y, Cheng Y. Natural Products from
Diaporthe arecae
with Anti‐Angiogenic Activity. Isr J Chem 2019. [DOI: 10.1002/ijch.201800158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fang‐Rong Chang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medicine, Mackay Medical College New Taipei city 252 Taiwan
| | - Chi‐Ying Li
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Yi Lu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shang‐Yin Vanson Liu
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Ching‐Yeu Chen
- Department of Physical TherapyTzu-Hui Institute of Technology Pingtung 926 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
18
|
Ibrahim AH, Attia EZ, Hajjar D, Anany MA, Desoukey SY, Fouad MA, Kamel MS, Wajant H, Gulder TAM, Abdelmohsen UR. New Cytotoxic Cyclic Peptide from the Marine Sponge-Associated Nocardiopsis sp. UR67. Mar Drugs 2018; 16:md16090290. [PMID: 30134565 PMCID: PMC6174345 DOI: 10.3390/md16090290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/04/2023] Open
Abstract
A new cyclic hexapeptide, nocardiotide A (1), together with three known compounds—tryptophan (2), kynurenic acid (3), and 4-amino-3-methoxy benzoic acid (4)—were isolated and identified from the broth culture of Nocardiopsis sp. UR67 strain associated with the marine sponge Callyspongia sp. from the Red Sea. The structure elucidation of the isolated compounds were determined based on detailed spectroscopic data including 1D and 2D nuclear magnetic resonance (NMR) experimental analyses in combination with high resolution electrospray ionization mass spectrometry (HR-ESI-MS), while the absolute stereochemistry of all amino acids components of nocardiotide A (1) was deduced using Marfey’s method. Additionally, ten known metabolites were dereplicated using HR-ESI-MS analysis. Nocardiotide A (1) displayed significant cytotoxic effects towards the murine CT26 colon carcinoma, human HeLa cervix carcinoma, and human MM.1S multiple myeloma cell lines. The results obtained revealed sponge-associated Nocardiopsis as a substantial source of lead natural products with pronounced pharmacological activities.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Dina Hajjar
- Department of Biochemistry, Faculty of Science, Center for Science and Medical Research, University of Jeddah, 80203 Jeddah, Saudi Arabia.
| | - Mohamed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntenring 11, 97070 Würzburg, Germany.
- Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, El Buhouth St., Dokki, 12622 Giza, Egypt.
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Mostafa Ahmed Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt.
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntenring 11, 97070 Würzburg, Germany.
| | - Tobias A M Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraβe 4, 85748 Garching, Germany.
| | | |
Collapse
|
19
|
Chen H, Wan C, Zhang L. A new diketopiperazine isolated from a Nocardiopsis strain TRM20105 guided by bioassay against Candida albicans. Nat Prod Res 2018; 33:3421-3425. [PMID: 29865888 DOI: 10.1080/14786419.2018.1475389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An actinomycete strain TRM20105 with antifungal activity was identified as Nocardiopsis dassonvillei subsp. dassonvillei DSM43111 (98.34% similarity) by 16S rDNA phylogenetic analysis and morphology observation. The fermentation broth of TRM20105 cultured with oat-soybean medium was subjected to discover bioactive compounds. Guided by antifungal bioassay against Candida albicans, a new diketopiperazine compound was purified via various column chromatographies together with pHPLC. The purified active compound was identified as 1-demethylnocazine A, (3Z,6Z)-5-methoxy-3,6-bis(4-methoxybenzylidene) -1,6-dihydropyrazin-2(3H)-one by the analyses of 1D & 2D NMR data.
Collapse
Affiliation(s)
- Haolun Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| | - Chuanxing Wan
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| |
Collapse
|
20
|
Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR. Natural Product Potential of the Genus Nocardiopsis. Mar Drugs 2018; 16:md16050147. [PMID: 29710816 PMCID: PMC5983278 DOI: 10.3390/md16050147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Actinomycetes are a relevant source of novel bioactive compounds. One of the pharmaceutically and biotechnologically important genera that attract natural products research is the genus Nocardiopsis, mainly for its ability to produce a wide variety of secondary metabolites accounting for its wide range of biological activities. This review covers the literature from January 2015 until February 2018 making a complete survey of all the compounds that were isolated from the genus Nocardiopsis, their biological activities, and natural sources, whenever applicable.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Minia 61111, Egypt.
| | - Tobias A M Gulder
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Biosystems Chemistry, Technical University of Munich, Lichtenbergstraβe 4, 85748 Garching, Germany.
| | | |
Collapse
|
21
|
Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Zhang JY, Lee KH. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38:1614-1660. [PMID: 29485730 DOI: 10.1002/med.21492] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
To follow-up on our prior Part I review, this Part II review summarizes and provides updated literature on novel quinoline and quinazoline alkaloids isolated during the period of 2009-2016, together with the biological activity and the mechanisms of action of these classes of natural products. Over 200 molecules with a broad range of biological activities, including antitumor, antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, hepatoprotective, antioxidant, anti-asthma, antitussive, and other activities, are discussed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Hadj Rabia-Boukhalfa Y, Eveno Y, Karama S, Selama O, Lauga B, Duran R, Hacène H, Eparvier V. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J Microbiol Biotechnol 2017; 33:126. [DOI: 10.1007/s11274-017-2292-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
|
23
|
Sun MW, Zhang XM, Bi HL, Li WJ, Lu CH. Two new sesquiterpenoids produced by halophilic Nocardiopsis chromatogenes YIM 90109. Nat Prod Res 2016; 31:77-83. [DOI: 10.1080/14786419.2016.1214831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ming-Wei Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Mei Zhang
- College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Hui-Li Bi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chun-Hua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
24
|
Xie CL, Niu SW, Zhou TT, Zhang GY, Yang Q, Yang XW. Chemical constituents and chemotaxonomic study on the marine actinomycete Williamsia sp. MCCC 1A11233. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Affiliation(s)
- Ming-Wei Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Zhi-Xing Guo
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Chun-Hua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
26
|
Bennur T, Ravi Kumar A, Zinjarde S, Javdekar V. Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol 2015; 120:1-16. [DOI: 10.1111/jam.12950] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- T. Bennur
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - A. Ravi Kumar
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - S.S. Zinjarde
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - V. Javdekar
- Department of Biotechnology; Abasaheb Garware College; Pune India
| |
Collapse
|
27
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
28
|
Bounagaea algeriensis gen. nov., sp. nov., an extremely halophilic actinobacterium isolated from a Saharan soil of Algeria. Antonie van Leeuwenhoek 2015; 108:473-82. [PMID: 26050246 DOI: 10.1007/s10482-015-0500-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
Abstract
A novel halophilic actinobacterium strain, designated H8(T), was isolated from a Saharan soil sample collected in El-Goléa, South Algeria. Strain H8(T) was identified as representing a new genus using a polyphasic taxonomic approach. Phylogenetic analysis revealed that strain H8(T) shared the highest degree of 16S rRNA gene sequence similarity with 'Mzabimyces algeriensis' DSM 46680(T) (93.0 %), Saccharopolyspora ghardaiensis DSM 45606(T) (91.2 %), Halopolyspora alba DSM 45976(T) (90.8 %) and Actinopolyspora mortivallis DSM 44261(T) (90.0 %). The strain was found to grow optimally at 28-35 °C, at pH 6.0-7.0, and in the presence of 15-25 % (w/v) NaCl. The substrate mycelium was observed to be well developed and fragmented in liquid medium and on solid medium. The aerial mycelium was observed to be moderately abundant and to form long chains with non-motile, smooth-surfaced and ovoid or spherical spores at maturity. The cell wall of strain H8(T) was found to contain meso-diaminopimelic acid. The whole-cell hydrolysates were found to mainly contain arabinose and galactose. The diagnostic phospholipid detected was phosphatidylcholine, and MK-9(H4), MK-9(H2) and MK-10(H2) were found to be the predominant menaquinones. The major cellular fatty acids were determined to be anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content of strain H8(T) was determined to be 71.3 mol%. The genotypic and phenotypic data showed that the strain represents a novel genus and species, for which the name Bounagaea algeriensis gen. nov., sp. nov. is proposed, with the type strain H8(T) (=DSM 45966(T) = CECT 8470(T)).
Collapse
|
29
|
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res 2015; 174:33-47. [PMID: 25946327 DOI: 10.1016/j.micres.2015.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022]
Abstract
Members of the genus Nocardiopsis are ecologically versatile and biotechnologically important. They produce a variety of bioactive compounds such as antimicrobial agents, anticancer substances, tumor inducers, toxins and immunomodulators. They also secrete novel extracellular enzymes such as amylases, chitinases, cellulases, β-glucanases, inulinases, xylanases and proteases. Nocardiopsis species are aerobic, Gram-positive, non-acid-fast, catalase-positive actinomycetes with nocardioform substrate mycelia and their aerial mycelia bear long chains of spores. Their DNA possesses high contents of guanine and cytosine. There is a marked variation in properties of the isolates obtained from different ecological niches and their products. An important feature of several species is their halophilic or halotolerant nature. They are associated with a variety of marine and terrestrial biological forms wherein they produce antibiotics and toxins that help their hosts in evading pathogens and predators. Two Nocardiopsis species, namely, N. dassonvillei and N. synnemataformans (among the thirty nine reported ones) are opportunistic human pathogens and cause mycetoma, suppurative infections and abscesses. Nocardiopsis species are present in some plants (as endophytes or surface microflora) and their rhizospheres. Here, they are reported to produce enzymes such as α-amylases and antifungal agents that are effective in warding-off plant pathogens. They are prevalent as free-living entities in terrestrial locales, indoor locations, marine ecosystems and hypersaline habitats on account of their salt-, alkali- and desiccation-resistant behavior. In such natural locations, Nocardiopsis species mainly help in recycling organic compounds. Survival under these diverse conditions is mediated by the production of extracellular enzymes, antibiotics, surfactants, and the accumulation of compatible solutes. The accommodative genomic features of Nocardiopsis species support their existence under the diverse conditions where they prevail.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Vaishali Javdekar
- Department of Biotechnology, Abasaheb Garware College, Pune 411004, India.
| |
Collapse
|
30
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Jose PA, Jebakumar SRD. Unexplored hypersaline habitats are sources of novel actinomycetes. Front Microbiol 2014; 5:242. [PMID: 24904555 PMCID: PMC4034035 DOI: 10.3389/fmicb.2014.00242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/04/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University Madurai, India
| | | |
Collapse
|