1
|
Kozhantayeva A, Tursynova N, Kolpek A, Aibuldinov Y, Tursynova A, Mashan T, Mukazhanova Z, Ibrayeva M, Zeinuldina A, Nurlybayeva A, Iskakova Z, Tashenov Y. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals (Basel) 2024; 17:996. [PMID: 39204101 PMCID: PMC11357188 DOI: 10.3390/ph17080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The study investigates the phytochemical profile, antioxidant capacity, and antimicrobial activities of ethanol (ChL-EtOH) and ethyl acetate (ChL-EtOAc) extracts from Chamaenerion latifolium L. (ChL) harvested in Kazakhstan. The ChL-EtOH extract exhibited higher total phenolic (267.48 ± 3.44 mg GAE/g DE) and flavonoid content (24.18 ± 1.06 mg QE/g DE) compared to ChL-EtOAc. HPLC-UV-ESI/MS identified key phenolic acids and flavonoids, including gallic acid, chlorogenic acid, and quercetin 3-glucoside. FT-IR analysis confirmed the presence of characteristic functional groups. Antioxidant assays revealed strong DPPH scavenging and FRAP activities, with ChL-EtOH showing superior results (IC50 = 21.31 ± 0.65 μg/mL and 18.13 ± 0.15 μg/mL, respectively). Additionally, ChL-EtOH displayed notable antimicrobial efficacy against Gram-positive and Gram-negative bacteria, as well as the fungal strain Candida albicans. These findings suggest that ethanol extraction is more efficient for isolating bioactive compounds from ChL, underscoring its potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Akmaral Kozhantayeva
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Nurgul Tursynova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Ainagul Kolpek
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yelaman Aibuldinov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Arailym Tursynova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Togzhan Mashan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Zhazira Mukazhanova
- Department of Chemistry, Graduate School of IT and Natural Sciences, East Kazakhstan University Named after S. Amanzholov, Ust-Kamenogorsk 010008, Kazakhstan;
| | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh.Yessenov, Aktau 130000, Kazakhstan;
| | - Aizhan Zeinuldina
- Department of General and Biological Chemistry, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan;
| | - Zhanar Iskakova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yerbolat Tashenov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| |
Collapse
|
2
|
Lasinskas M, Jariene E, Kulaitiene J, Vaitkeviciene N, Hallmann E, Paulauskas V. Flavonoids, Phenolic Acids, and Tannin Quantities and Their Antioxidant Activity in Fermented Fireweed Leaves Grown in Different Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1922. [PMID: 39065449 PMCID: PMC11281143 DOI: 10.3390/plants13141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The increasing demand for organic and biodynamically cultivated fireweeds worldwide has led to a paucity of studies on the effects of solid-phase fermentation and various growth techniques on the quantities of biologically active substances and their antioxidant activity. This experiment was carried out in 2023 at the organic farm in the Jonava district (Safarkos village, Lithuania). The aim of this work was to investigate polyphenols (flavonoids and phenolic acids) and antioxidant activity in fireweed (Chamerion angustifolium (L.) Holub) leaves fermented for 24 and 48 h in solid-phase fermentation and natural, organic, and biodynamic cultivation. Fireweeds have high quantities of polyphenols and strong antioxidant activity. The method employed for determining antioxidant activity was spectrophotometric, for measuring polyphenols, high-performance liquid chromatography (HPLC). Principal component analysis (PCA) was used to determine the relationships between the average content of total polyphenols and antioxidant activity in fermented fireweed leaves grown in different systems. This study's findings demonstrated that the leaves of fireweed cultivated organically had the greatest concentration of total flavonoids, total phenolic acids, and total polyphenols. Comparing the fermentation process effect, the amount of predominant phenolic acids-chlorogenic, p-coumaric, and ellagic acids-as well as the content of oenothein B, during the fermentation process significantly decreased, but the concentration of quercetin-3-O-glucoside after a short time of the fermentation process significantly increased. According to the obtained results, it would be possible to create various health-giving and nature-friendly products from fireweeds.
Collapse
Affiliation(s)
- Marius Lasinskas
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania; (E.J.); (J.K.); (N.V.)
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania; (E.J.); (J.K.); (N.V.)
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania;
| | - Jurgita Kulaitiene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania; (E.J.); (J.K.); (N.V.)
| | - Nijole Vaitkeviciene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania; (E.J.); (J.K.); (N.V.)
| | - Ewelina Hallmann
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania;
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 15c, 02-776 Warsaw, Poland
| | - Valdas Paulauskas
- Department of Environment and Ecology, Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania;
| |
Collapse
|
3
|
Dreger M, Adamczak A, Foksowicz-Flaczyk J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals (Basel) 2023; 16:1419. [PMID: 37895890 PMCID: PMC10609845 DOI: 10.3390/ph16101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to provide an overview of available information on the antibacterial and antifungal properties of Epilobium angustifolium extracts. A literature search of Scopus, PubMed/Medline, and Google Scholar for peer-reviewed articles published between January 2000 and June 2023 was undertaken. A total of 23 studies were eligible for inclusion in this review. Significant variation of antimicrobial activity depending on the tested species and strains, type of extract solvent, or plant organs utilized for the extract preparation was found. E. angustifolium extracts were active against both Gram-positive and Gram-negative bacteria and showed antimycotic effects against the fungi of Microsporum canis and Trichophyton tonsurans and the dermatophytes Arthroderma spp. Greater susceptibility of Gram-positive than Gram-negative bacteria to fireweed extracts was found. A strong antibacterial effect was recorded for Staphylococcus aureus, Bacillus cereus, Micrococcus luteus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii including multi-drug resistant strains. E. angustifolium extract might find practical application as an antimicrobial in wound healing, components of cosmetic products for human and animals, or as food preservatives.
Collapse
Affiliation(s)
- Mariola Dreger
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Artur Adamczak
- Department of Breeding and Botany of Useful Plants, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Joanna Foksowicz-Flaczyk
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| |
Collapse
|
4
|
Lasinskas M, Jariene E, Kulaitiene J, Vaitkeviciene N, Jakiene E, Skiba D, Hallmann E. Studies of the Variability of Biologically Active Compounds and Antioxidant Activity in Organically, Biodynamically, and Naturally Grown and Fermented Fireweed ( Chamerion angustifolium (L.) Holub) Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:2345. [PMID: 37375970 DOI: 10.3390/plants12122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
With the growing global demand for organically and biodynamically grown fireweeds, little research is being conducted on them, and little is known about how the different growing systems and the process of solid-phase fermentation changes biologically active substances and antioxidant activity. Our experiment was conducted in 2022 in Jonava district, Safarkos village, Giedres Nacevicienes organic farm (No. SER-T-19-00910, Lithuania, 55°00'22″ N 24°12'22″ E). This study aimed to investigate the influence of various growing systems (natural, organic, and biodynamic) and technological parameters (different duration: 24, 48 and 72 h) of aerobic solid-phase fermentation on the change of flavonoids, phenolic acids, tannins, carotenoids, chlorophylls, and antioxidant activity. High-performance liquid chromatography (HPLC) for polyphenols, carotenoids, and chlorophylls as well as the spectrophotometric method for antioxidant activity determinations were used. The results of the study showed that different growing systems (natural, organic, and biodynamic) and solid-phase fermentation had a significant effect on the quantitative composition of biologically active substances in the leaves of the fireweeds. According to these data, it would be possible to recommend fermented fireweed leaves grown organically as a source of polyphenols (especially: phenolic acids and flavonoids), leaves grown biodynamically as a source of carotenoids (exceptionally: lutein and beta-carotene) and chlorophyll, and leaves grown naturally for better antioxidant activity.
Collapse
Affiliation(s)
- Marius Lasinskas
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Jurgita Kulaitiene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Nijole Vaitkeviciene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Erika Jakiene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 15c, 02-776 Warsaw, Poland
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| |
Collapse
|
5
|
Lasinskas M, Jariene E, Vaitkeviciene N, Kulaitiene J, Adamaviciene A, Hallmann E. The Impact of Solid-Phase Fermentation on Flavonoids, Phenolic Acids, Tannins and Antioxidant Activity in Chamerion angustifolium (L.) Holub (Fireweed) Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:277. [PMID: 36678990 PMCID: PMC9863328 DOI: 10.3390/plants12020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
At present, the consumption of medical plants and functional foods is growing across the whole world. Fireweed (Chamerion angustifolium (L.) Holub), an important medicinal plant that has various pharmacological effects (antioxidant, anti-inflammatory, anticancer and others), can improve the state of health and well-being and reduce the risk of various diseases. The aim of this work was to investigate polyphenols (flavonoids, phenolic acids and tannins) and antioxidant activity in fireweed leaves fermented for 24, 48 and 72 h in solid-phase fermentation under aerobic and anaerobic conditions. High-performance liquid chromatography (HPLC) for polyphenols and the spectrophotometric method based on quenching of stable colored radical (ABTS•+) for antioxidant activity determinations were used. The results showed that the highest amounts of total polyphenols, total flavonoids and tannin oenothein B in the dried matter were found after 72 h and the highest total phenolic acids after 48 h of anaerobic solid-phase fermentation. The highest antioxidant activity was found after 72 h of solid-phase fermentation under aerobic conditions.
Collapse
Affiliation(s)
- Marius Lasinskas
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Nijole Vaitkeviciene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Jurgita Kulaitiene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Aida Adamaviciene
- Department of Agroecosystems and Soil Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 15c, 02-776 Warsaw, Poland
- Bioeconomy Research Institute, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| |
Collapse
|
6
|
Comparative Analysis of the Efficiency of Medicinal Plants for the Treatment and Prevention of COVID-19. Int J Biomater 2022; 2022:5943649. [DOI: 10.1155/2022/5943649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic has once again prompted people to resort to the remedies of folk and alternative medicine. Medicinal plants, because of their chemical composition, pharmacological properties, and the action of biologically active substances, can stop and relieve the symptoms of the disease. The purpose of the work is a comparative flora analysis of medicinal plants to identify the most prospective plant and further production of a remedy for the avoidance, treatment, and rehabilitation of COVID-19. The search for prospective medicinal plants was performed by analyzing the literature in online databases: Web of Science, Scopus, Google Scholar, and PubMed, including official WHO media sites. According to recent studies related to COVID-19, a significant number of medicinal plants with anti-inflammatory, antiviral, and immunostimulatory effects have been identified. A comparative study of nine medicinal plants was conducted to determine the most suitable medicinal plant to treat coronavirus infection. According to the results of the comparative analysis, Chamaenerion angustifolium Seg. showed itself as the most prospective medicinal plant with the greatest pharmacological effect compared with other types of medicinal plants. Its therapeutic properties allow physiological relief of 18 symptoms of coronavirus infection. It is advisable to conduct further clinical trials for the treatment and rehabilitation of COVID-19 using preparations from this plant.
Collapse
|
7
|
Abbasi-Karin S, Karimzadeh G, Mohammadi-Bazargani M. Interspecific Chromosomal and Genome Size Variations in <i>In Vitro</i> Propagated Willow Herb (<i>Epilobium</i> spp.) Medicinal Plant. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shima Abbasi-Karin
- Department of Plant Genetics and Breeding, College of Agriculture, Tarbiat Modares University
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, College of Agriculture, Tarbiat Modares University
| | | |
Collapse
|
8
|
Shawky EM, Elgindi MR, Ibrahim HA, Baky MH. The potential and outgoing trends in traditional, phytochemical, economical, and ethnopharmacological importance of family Onagraceae: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114450. [PMID: 34314807 DOI: 10.1016/j.jep.2021.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Onagraceae is a widely distributed family of flowering plants comprises about 17 genera and more than 650 species of herbs, shrubs, and trees. Onagraceae also common as willowherb family or evening primrose family is divided into two subfamilies; Ludwigioideae (mainly genus; Ludwigia) and Onagroideae. Family Onagraceae is characterized by its numerous traditional uses as treatment of hormonal imbalances, urinary system ailments, prostate health maintenance, and antimicrobial effects. AIM OF THE STUDY This review aims to introduce a holistic overview on the phytochemical composition, economical importance and ethnopharmacological value of different species of family Onagraceae. MATERIALS AND METHODS Literature review was performed using different data bases such as PubMed, Web of Science, Google Scholar and Reaxys searching for articles focused on phytochemical composition, bioactivity and ethnopharmacological history of Onagraceae species. RESULTS Different species of Onagraceae were reported to have a great variety of phytochemicals including flavonoids, tannins, phenolic acids, triterpenoids, saponins, and volatile/fixed oils. Onagraceae exhibited several health benefits and pharmacological activities including anti-inflammatory, antiarthritic and analgesic, antioxidant, cytotoxic, antidiabetic, and antimicrobial. CONCLUSIONS Family Onagraceae is an extremely important family with diverse phytochemical composition which enriches their pharmacological importance and hence it's commercial and economical value.
Collapse
Affiliation(s)
- Enas M Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt
| | - Mohamed R Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Haitham A Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University. Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
9
|
Baky MH, Shawky EM, Elgindi MR, Ibrahim HA. Comparative Volatile Profiling of Ludwigia stolonifera Aerial Parts and Roots Using VSE-GC-MS/MS and Screening of Antioxidant and Metal Chelation Activities. ACS OMEGA 2021; 6:24788-24794. [PMID: 34604660 PMCID: PMC8482508 DOI: 10.1021/acsomega.1c03627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Ludwigia stolonifera (Guill. & Perr.) P.H.Raven belonging to the family Onagraceae is an important aquatic herbal plant of economic importance in water bioremediation. We explored the compositional heterogeneity in the aroma profile of L. stolonifera aerial parts and roots. Volatile profiling was employed for the first time using volatile solvent extraction (VSE-GC-MS/MS) of both aerial parts and roots. A total of 85 volatiles were identified belonging to eight classes, viz., aliphatic, aromatic, and oxygenated hydrocarbons, monoterpenes, diterpenes, alcohols, acids/esters, and sterols. Aliphatic and aromatic hydrocarbons were found to be the most abundant metabolite groups in both aerial parts and roots. Furthermore, antioxidant and metal chelation activities of aerial parts and roots were investigated, revealing a potent activity as an antioxidant and high metal chelation capacity for heavy metals.
Collapse
Affiliation(s)
- Mostafa H. Baky
- Department
of Pharmacognosy, Faculty of Pharmacy, Egyptian
Russian University, Badr City 11829, Cairo, Egypt
| | - Enas M. Shawky
- Department
of Pharmacognosy, Faculty of Pharmacy, Egyptian
Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department
of Pharmacognosy, Faculty of Pharmacy, Helwan
University, Cairo 11795, Egypt
| | - Haitham A. Ibrahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Helwan
University, Cairo 11795, Egypt
| |
Collapse
|
10
|
Kavaz Yüksel A, Dikici E, Yüksel M, Işık M, Tozoğlu F, Köksal E. Phytochemical, phenolic profile, antioxidant, anticholinergic and antibacterial properties of Epilobium angustifolium (Onagraceae). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01050-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Pharmacological properties of fireweed (Epilobium angustifolium L.) and bioavailability of ellagitannins. A review. HERBA POLONICA 2020. [DOI: 10.2478/hepo-2020-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Summary
Fireweed (Epilobium angustifolium L.) is a well-known medicinal plant traditionally used in the treatment of urogenital diseases, stomach and liver disorders, skin problems, etc. E. angustifolium extracts show anti-androgenic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial activities. The unique combination of biological properties demonstrated by the results of some studies indicates that fireweed has a positive effect in benign prostatic hyperplasia (BPH) and potentially in the prostate cancer chemoprevention. However, the efficacy of E. angustifolium phytotherapy is still poorly tested in clinical trials, while numerous beneficial effects of extracts have been documented in the in vitro and in vivo tests. Fireweed is rich in polyphenolic compounds, particularly ellagitannins. Currently, polyphenols are considered to be modulators of beneficial gut microbiota. The literature data support the use of ellagitannins in the prostate cancer chemoprevention, but caution is advised due to the highly variable production of urolithins by the individual microbiota. A better understanding of the microbiota’s role and the mechanisms of its action are crucial for an optimal therapeutic effect. This paper aims to summarize and discuss experimental data concerning pharmacological properties of E. angustifolium and bioavailability of ellagitannins – important bioactive compounds of this plant.
Collapse
|
12
|
Application of green-extraction technique to evaluate of antioxidative capacity of wild population of fireweed (Epilobium angustifolium). HERBA POLONICA 2020. [DOI: 10.2478/hepo-2019-0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Summary
Introduction: Fireweed (Epilobium angustifolium (L.) Holub) is a common weed growing on meadows, roadside and agricultural wasteland, creating vast, rapidly spreading fields.
Objective: The aim of the study was to evaluate the antioxidant activity of extracts from fresh fireweed, harvested at three ripening stages.
Methods: Analysis of antioxidative activity was carried out by DPPH, ABTS and FRAP methods. Total polyphenol and total flavonoid content were also determined. Plant material was extracted using ultra-sound-assisted green extraction technique with methanol, ethanol and isopropanol at different concentrations and water.
Results: The highest antioxidant activity evaluated by DPPH, ABTS and FRAP was found for the extracts prepared in 70% ethanol. The highest content of total polyphenols were observed in extracts in 70% ethanol, whereas the highest content of flavonoids extracts in undiluted methanol.
Conclusion:
Epilobium angustifolium harvested at fruit ripening stage seems to be a valuable source of antioxidants.
Collapse
|
13
|
Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A review. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2019-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Fireweed (Epilobium angustifolium L., Onagraceae) is one of important medicinal plants used especially in the treatment of urogenital disorders, including benign prostatic hyperplasia (BPH) and prostatitis. The therapeutic effects of E. angustifolium extracts comprise antiproliferative, anti-inflammatory, immunomodulatory, antioxidant, and also antimicrobial activities. The aim of the present review was to provide the information on the botany, phytochemistry and traditional uses of E. angustifolium. This plant is a widespread circumboreal species of North America and Eurasia, tolerant in terms of habitat conditions, and often occupying man-made open habitats. Phytochemical studies on E. angustifolium resulted in the identification of about 250 different metabolites, including about 170 substances found for the first time in this plant in the last six years (2014–2019). Fireweed has an abundance of polyphenolic compounds, particularly ellagitannins. Oenothein B and quercetin-3-O-glucuronide are proposed as markers for the identification and standardization of the plant raw material. E. angustifolium exhibits significant phytochemical variability in relation to the geographical origin, plant part and time of harvest/vegetation phase. Survey of the ethnobotanical literature showed that the above-mentioned species has been widely used not only as a medicinal, but also as an edible, honey and decorative plant.
Collapse
|
14
|
Drevinskas T, Maruška A, Telksnys L, Hjerten S, Stankevičius M, Lelešius R, Mickienė RT, Karpovaitė A, Šalomskas A, Tiso N, Ragažinskienė O. Chromatographic Data Segmentation Method: A Hybrid Analytical Approach for the Investigation of Antiviral Substances in Medicinal Plant Extracts. Anal Chem 2018; 91:1080-1088. [PMID: 30488694 DOI: 10.1021/acs.analchem.8b04595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The methodology described in this article will significantly reduce the time required for understanding the relations between chromatographic data and bioactivity assays. The methodology is a hybrid of hypothesis-based and data-driven scientific approaches. In this work, a novel chromatographic data segmentation method is proposed, which demonstrates the capability of finding what volatile substances are responsible for antiviral and cytotoxic effects in the medicinal plant extracts. Up until now, the full potential of the separation methods has not been exploited in the life sciences. This was due to the lack of data ordering methods capable of adequately preparing the chromatographic information. Furthermore, the data analysis methods suffer from multidimensionality, requiring a large number of investigated data points. A new method is described for processing any chromatographic information into a vector. The obtained vectors of highly complex and different origin samples can be compared mathematically. The proposed method, efficient with relatively small sized data sets, does not suffer from multidimensionality. In this novel analytical approach, the samples did not need fractionation and purification, which is typically used in hypothesis-based scientific research. All investigations were performed using crude extracts possessing hundreds of phyto-substances. The antiviral properties of medicinal plant extracts were investigated using gas chromatography-mass spectrometry, antiviral tests, and proposed data analysis methods. The findings suggested that (i) β- cis-caryophyllene, linalool, and eucalyptol possess antiviral activity, while (ii) thujones do not, and (iii) α-thujone, β-thujone, cis- p-menthan-3-one, and estragole show cytotoxic effects.
Collapse
Affiliation(s)
| | | | - Laimutis Telksnys
- Institute of Data Science and Digital Technologies , Vilnius University , Goštauto 12 , Vilnius LT-01108 , Lithuania
| | - Stellan Hjerten
- Department of Chemistry-BMC, Biochemistry , Uppsala University , Husargatan 3 , Uppsala 752 37 , Sweden
| | | | | | | | | | | | | | - Ona Ragažinskienė
- Sector of Medicinal Plants , Kaunas Botanical Garden of Vytautas Magnus University , Z. E. Žilibero str. 6 , Kaunas LT-46324 , Lithuania
| |
Collapse
|
15
|
Vitalone A, Allkanjari O. Epilobium spp: Pharmacology and Phytochemistry. Phytother Res 2018; 32:1229-1240. [PMID: 29575111 DOI: 10.1002/ptr.6072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Abstract
The Epilobium species and their extracts are very popular in folk medicine, for a wide range of applications. The purpose of this review is the analysis of the pharmacological properties of Epilobium spp, considering whether their effects (e.g., anti-inflammatory, antioxidant, antitumor, antimicrobial, analgesic, and antiandrogenic) could rationally justify the use of Epilobium as a treatment of numerous diseases. Even if numerous preclinical studies have been reported, randomized controlled clinical trials (for the evaluation of safety and efficacy), and eventually cost-effectiveness studies (to estimate the long-term cumulative costs), are still needed to confirm the usefulness of these medicinal plants in human diseases.
Collapse
Affiliation(s)
- Annabella Vitalone
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Olta Allkanjari
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Deng LQ, Zhou SY, Mao JX, Liu S, Lan XZ, Liao ZH, Chen M. HPLC-ESI-MS/MS analysis of phenolics and in vitro antioxidant activity of Epilobium angustifolium L. Nat Prod Res 2017. [DOI: 10.1080/14786419.2017.1344659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Qing Deng
- College of Pharmaceutical Sciences, Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), Southwest University, Chongqing, P.R. China
| | - Si-Yu Zhou
- College of Pharmaceutical Sciences, Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), Southwest University, Chongqing, P.R. China
| | - Jin-Xin Mao
- College of Pharmaceutical Sciences, Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), Southwest University, Chongqing, P.R. China
| | - Shuang Liu
- College of Pharmaceutical Sciences, Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), Southwest University, Chongqing, P.R. China
| | - Xiao-Zhong Lan
- XiZang Agriculture and Animal Husbandry College, Nyingchi, Tibet, P.R. China
| | - Zhi-Hua Liao
- School of Life Sciences, Southwest University, Chongqing, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), Southwest University, Chongqing, P.R. China
| |
Collapse
|
17
|
Wu J, Wang C, Huang G, Zhao J, Wang X, Ji L, Zhang X. Biotransformation of vine tea ( Ampelopsis grossedentata) by solid-state fermentation using medicinal fungus Poria cocos. Journal of Food Science and Technology 2016; 53:3225-3232. [PMID: 27784917 DOI: 10.1007/s13197-016-2297-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Vine tea was bio-transformed using Poria cocos by solid-state fermentation in order to improve its taste and quality. Volatile components in vine tea were also identified by GC-MS. The changes of flavonoid, tea polyphenols and polysaccharides in fermented vine tea were evaluated. Flavonoid and polyphenols in vine tea were remained unchanged even after biotransformation, but content of polysaccharides increased to 3.9-fold than that of unfermented vine tea. Antioxidant activity such as DPPH free radical scavenging capacity (SR) was determined that there was a positive correlation between SR and content of polysaccharides in vine tea. Methyl 2-methylvalerate-a new volatile compound was identified and gave the vine tea rich delicate fragrance of fruits. The content of linolenic acid increased from 0.88 to 19.59 %. Biotransformation improved the taste and quality of vine tea.
Collapse
Affiliation(s)
- Jianguo Wu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Chenhuan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Gang Huang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jieyuan Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Lilian Ji
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Life Science, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China ; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Changjiang West Road 111, Huai'an, 223300 China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
18
|
Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytother Res 2016; 30:1287-97. [PMID: 27215200 DOI: 10.1002/ptr.5648] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/27/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, antibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew G Ramstead
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|