1
|
Ramasubramanian A, Venkatachalam K, Chellaiah I, Chinnathambi P, Palanichamy A, Nguyen V, Paulraj B. Phytochemical Profiling, Antioxidants, Antimicrobial and Anti‐Proliferative Effect of
Senna hirsuta
against PC‐3 Human Prostate Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202201516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arumugam Ramasubramanian
- PG and Research Department of Botany Alagappa Government Arts College, Karaikudi Tamilnadu India
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project Prince of Songkla University Surat Thani Campus, Makham Tia Mueang, Surat Thani 84000 Thailand
| | - Ijin Chellaiah
- PG and Research Department of Botany Alagappa Government Arts College, Karaikudi Tamilnadu India
| | | | - Ayyappan Palanichamy
- PG and Research Department of Botany Government Arts College, Melur Tamilnadu India
| | - Van‐Huy Nguyen
- Chettinad Hospital and Research Institute Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district- 603103 Tamil Nadu India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology MGR College Hosur India
| |
Collapse
|
2
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|
3
|
Spiegler V, Liebau E, Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat Prod Rep 2017; 34:627-643. [PMID: 28426037 DOI: 10.1039/c6np00126b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2001 up to the end of 2016Polyphenols comprise a structurally diverse class of natural products. As the development of new anthelmintic drugs against soil-transmitted helminthiases is an urgent need and polyphenols are widely used in the treatment of nematode infections in traditional medicine and modern science, we summarize the state of knowledge in the period of mainly 2001 up to the end of 2016 on plant extracts with known polyphenolic composition and of defined polyphenols, mainly from the classes of condensed and hydrolysable tannins, flavonoids, and phenylpropanoids. The diverse biological activity against different helminths and the underlying mechanisms are reviewed.
Collapse
Affiliation(s)
- V Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany.
| | | | | |
Collapse
|
4
|
Navarro-Hoyos M, Lebrón-Aguilar R, Quintanilla-López JE, Cueva C, Hevia D, Quesada S, Azofeifa G, Moreno-Arribas MV, Monagas M, Bartolomé B. Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat's Claw). Antioxidants (Basel) 2017; 6:E12. [PMID: 28165396 PMCID: PMC5384175 DOI: 10.3390/antiox6010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 11/17/2022] Open
Abstract
Apart from alkaloids, bioactive properties of Uncaria tomentosa L. have been attributed to its phenolic constituents. Although there are some reports concerning low-molecular-weight polyphenols in U. tomentosa, its polymeric phenolic composition has been scarcely studied. In this study, phenolic-rich extracts from leaves, stems, bark and wood (n = 14) of Uncaria tomentosa plants from several regions of Costa Rica were obtained and analysed in respect to their proanthocyanidin profile determined by a quadrupole-time-of-flight analyser (ESI-QTOF MS). Main structural characteristics found for U. tomentosa proanthocyanidins were: (a) monomer composition, including pure procyanidins (only composed of (epi)catechin units) and propelargonidins (only composed of (epi)afzelechin units) as well as mixed proanthocyanidins; and (b) degree of polymerization, from 3 up to 11 units. In addition, U. tomentosa phenolic extracts were found to exhibit reasonable antioxidant capacity (ORAC (Oxygen Radical Absorbance Capacity) values between 1.5 and 18.8 mmol TE/g) and antimicrobial activity against potential respiratory pathogens (minimum IC50 of 133 µg/mL). There were also found to be particularly cytotoxic to gastric adenocarcinoma AGS and colon adenocarcinoma SW620 cell lines. The results state the particularities of U. tomentosa proanthocyanidins and suggest the potential value of these extracts with prospective use as functional ingredients.
Collapse
Affiliation(s)
- Mirtha Navarro-Hoyos
- Department of Chemistry, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San José 2060, Costa Rica.
| | - Rosa Lebrón-Aguilar
- Institute of Physical Chemistry "Rocasolano", CSIC,C/ Serrano 119, Madrid 28006, Spain.
| | | | - Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Madrid 28049, Spain.
| | - David Hevia
- IUOPA-Redox Biology Group, Department of Cellular Morphology and Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria 6, Oviedo 33006, Spain.
| | - Silvia Quesada
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San José 2060, Costa Rica.
| | - Gabriela Azofeifa
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San José 2060, Costa Rica.
| | | | - María Monagas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Madrid 28049, Spain.
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/ Nicolás Cabrera 9, Madrid 28049, Spain.
| |
Collapse
|