1
|
Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, Shi LC, Ma GX, Xu XD, Yang MH, Zhao ZJ, Li YX, Xue J, Chen CH, Wu HF. Recent progress on triterpenoid derivatives and their anticancer potential. PHYTOCHEMISTRY 2025; 229:114257. [PMID: 39209239 DOI: 10.1016/j.phytochem.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.
Collapse
Affiliation(s)
- Zi-Xuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiong-Yu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Ying-Hong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiang-Yuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lin-Chun Shi
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guo-Xu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zi-Jian Zhao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuan-Xiang Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chin-Ho Chen
- Antiviral Drug Discovery Laboratory, Surgical Oncology Research Facility, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hai-Feng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2024:10.1038/s41401-024-01404-7. [PMID: 39482471 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Wei C, Wang H, Sun X, Bai Z, Wang J, Bai G, Yao Q, Xu Y, Zhang L. Pharmacological profiles and therapeutic applications of pachymic acid (Review). Exp Ther Med 2022; 24:547. [PMID: 35978941 PMCID: PMC9366251 DOI: 10.3892/etm.2022.11484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Poria cocos is a saprophytic fungus that grows in diverse species of Pinus. Its sclerotium, called fu-ling or hoelen, has been used in various traditional Chinese medicines and health foods for thousands of years, and in several modern proprietary traditional Chinese medicinal products. It has extensive clinical indications, including sedative, diuretic, and tonic effects. Pachymic acid (PA) is the main lanostane-type triterpenoid in Poria cocos. Evidence suggests that PA has various biological properties such as cytotoxic, anti-inflammatory, antihyperglycemic, antiviral, antibacterial, sedative-hypnotic, and anti-ischemia/reperfusion activities. Although considerable advancements have been made, some fundamental and intricate issues remain unclear, such as the underlying mechanisms of PA. The present study aimed to summarize the biological properties and therapeutic potential of PA. The biosynthetic, pharmacokinetic, and metabolic pathways of PA, and its underlying mechanisms were also comprehensively summarized.
Collapse
Affiliation(s)
- Chunyong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hezhen Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xun Sun
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixun Bai
- Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qizheng Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yingshu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lei Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Li L, Zuo ZT, Wang YZ. The Traditional Usages, Chemical Components and Pharmacological Activities of Wolfiporia cocos: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:389-440. [PMID: 35300566 DOI: 10.1142/s0192415x22500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As an endemic species,Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is widely distributed, such as in China, Korea, Japan, and North America, which have had a dual-purpose resource for medicines and food for over 2000 years. The applications of W. cocos were used to treat diseases including edema, insomnia, spleen deficiency, and vomiting. What's more, there have been wide uses of such edible fungi as a function food or dietary supplement recently. Up until now, 166 kinds of chemical components have been isolated and identified from W. cocos including triterpenes, polysaccharides, sterols, diterpenes, and others. Modern pharmacological studies showed that the components hold a wide range of pharmacological activities both in vitro and in vivo, such as antitumor, anti-inflammatory, antibacterial, anti-oxidant, and antidepressant activities. In addition, present results showed that the mechanisms of pharmacological activities were closely related to chemical structures, molecular signaling paths and the expression of relate proteins for polysaccharides and triterpenes. For further in-depth studies on this fungus based on the recent research status, this review provided some perspectives and systematic summaries of W. cocos in traditional uses, chemical components, pharmacological activities, separation and analysis technologies, and structure-activity relationships.
Collapse
Affiliation(s)
- Lian Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| |
Collapse
|
5
|
Feng Z, Shi H, Liang B, Ge T, Cai M, Liu F, Huang K, Wen J, Chen Q, Ge B. Bioinformatics and experimental findings reveal the therapeutic actions and targets of pachymic acid against cystitis glandularis. Biofactors 2021; 47:665-673. [PMID: 33893687 DOI: 10.1002/biof.1734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Pachymic acid (PA), a bioactive ingredient isolated from Poria cocos Wolf, is reported with potential benefits of anti-inflammatory, anti-oxidative actions. It is reasoned that PA may play the potential benefits against cystitis glandularis (CG), an inflammation of the bladder tissue. In this study, we aimed to apply the network pharmacology and molecular docking analyses to reveal concrete anti-CG targets and mechanisms of PA, and then the bioinformatic findings were verified by using clinical and animal samples. The methodological data from network pharmacology approach showed that 303 and 243 reporting targets of CG and PA, and other 31 shared targets of CG and PA were identified. Subsequently, all top targets of PA against CG were screened out, including cyclooxygenase-2, epidermal growth factor receptor, tumor antigen p53 (TP53), tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1) beta, proto-oncogene c-jun. Molecular docking data demonstrated that PA exerted potent bonding capacities with TNF, TP53 proteins in CG. In human study, the findings suggested that overactivated TNF-α expression and suppressed TP53 activation were detected in CG samples. In animal study, PA-treated mice showed reduced intravesical IL-1, IL-6 levels, and lactate dehydrogenase content, downregulated TNF-α and upregulated TP53 proteins in bladder samples. Taken together, our bioinformatics and experimental findings identify the key anti-CG biotargets and mechanisms of PA. More markedly, these pivotal pharmacological targets of PA against CG have been screened out and verified by using computational and experimental analyses.
Collapse
Affiliation(s)
- Zihao Feng
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Hailin Shi
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bojian Liang
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Tianyu Ge
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Menghui Cai
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Feng Liu
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Kunping Huang
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jintao Wen
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Qiuhong Chen
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Ge
- The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
6
|
Abstract
Poria is a common Traditional Chinese Medicine in clinic. In recent years, the chemical and pharmacological studies of Poria have made great progress, triterpenes and polysaccharides have been isolated, and various types of compounds containing lipids, octanoic acids, fatty acids, and trace elements have been found. In this paper, we reviewed the literature, summarized the main compound types, and reviewed in detail their pharmacological effects in antitumor, immunomodulatory, effects on kidney, hepatoprotective activity, effects on blood sugar, antioxidant effects, anti-inflammatory effects, effects on the gut, antidepressant, and so on, and also categorized the compounds with the same or similar pharmacological effects to provide a reference for the in-depth study of the material basis of the pharmacological effect, quality standards, and pharmacological activity of Poria.
Collapse
|
7
|
Li Q, Ming Y, Jia H, Wang G. Poricoic acid A suppresses TGF-β1-induced renal fibrosis and proliferation via the PDGF-C, Smad3 and MAPK pathways. Exp Ther Med 2021; 21:289. [PMID: 33717232 PMCID: PMC7885072 DOI: 10.3892/etm.2021.9720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Renal interstitial fibrosis is the most important pathological process in chronic renal failure. Previous studies have shown that poricoic acid A (PAA), the main chemical constituent on the surface layer of the mushroom Poria cocos, has protective effects against oxidative stress and acute kidney injury. The present study aimed to investigate the potential roles of PAA on the pathological process of renal fibrosis and the associated molecular mechanism. The NRK-49F cell line was treated with transforming growth factor-β1 (TGF-β1) with or without PAA or platelet-derived growth factor C (PDGF-C). Cell Counting Kit-8 assay, western blotting and 5-ethynyl-2'-deoxyuridine immunofluorescence staining were performed to examine cell growth, protein expression and cell proliferation, respectively. Data from the present study showed that 10 µM PAA attenuated TGF-β1-induced NRK-49F cell extracellular matrix (ECM) accumulation, fibrosis formation and proliferation. Renal fibrosis with the activation of Smad3 and mitogen-activated protein kinase (MAPK) pathways were also inhibited by PAA treatment. PDGF-C reversed the inhibitory effects of PAA on TGF-β1-induced renal fibroblast proliferation and activation of the Smad3/MAPK pathway. The present study suggested that suppression of TGF-β1-induced renal fibroblast ECM accumulation, fibrosis formation and proliferation by PAA is mediated via the inhibition of the PDGF-C, Smad3 and MAPK pathways. The present findings not only revealed the potential anti-fibrotic effects of PAA on renal fibroblasts, but also provided a new insight into the prevention of fibrosis formation via regulation of the PDGF-C, Smad3 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qiang Li
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Ming
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hu Jia
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Gang Wang
- Department of Nephrology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
8
|
Feng G, Zheng Y, Sun Y, Liu S, Pi Z, Song F, Liu Z. A targeted strategy for analyzing untargeted mass spectral data to identify lanostane–type triterpene acids in Poria cocos by integrating a scientific information system and liquid chromatography–tandem mass spectrometry combined with ion mobility spectrometry. Anal Chim Acta 2018; 1033:87-99. [DOI: 10.1016/j.aca.2018.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
9
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Lai KH, Lu MC, Du YC, El-Shazly M, Wu TY, Hsu YM, Henz A, Yang JC, Backlund A, Chang FR, Wu YC. Cytotoxic Lanostanoids from Poria cocos. JOURNAL OF NATURAL PRODUCTS 2016; 79:2805-2813. [PMID: 27808511 DOI: 10.1021/acs.jnatprod.6b00575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six new and 16 known lanostanoids were isolated from the sclerotia of Poria cocos. The structures of the new isolates were elucidated to be 16α-hydroxy-3-oxo-24-methyllanosta-5,7,9(11),24(31)-tetraen-21-oic acid (1), 3β,16α,29-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (2), 3β,16α,30-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (3), 3β-acetoxy-16α,24β-dihydroxylanosta-7,9(11),25-trien-21-oic acid (4), 3β,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (5), and 3α,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (6), based on extensive spectroscopic analyses. The absolute configuration of 4 was determined using Mosher's method. The antiproliferative activity of the isolated compounds (except 3 and 4) was evaluated against four leukemic cell lines (Molt 4, CCRF-CEM, HL 60, and K562). Dehydropachymic acid (9), dehydroeburicoic acid (12), pachymic acid (14), and lanosta-7,9(11),24-trien-21-oic acid (20) exhibited an antiproliferative effect on the CCRF-CEM cancer cell line with IC50 values of 2.7, 6.3, 4.9, and 13.1 μM, respectively. Both dehydropachymic acid (9) and dehydroeburicoic acid (12) showed antiproliferative effects against Molt 4 (IC50 13.8 and 14.3 μM) and HL 60 (IC50 7.3 and 6.0 μM) leukemic cell lines. Primary computational analysis using a chemical global positioning system for natural products (ChemGPS-NP) on the active lanostanoids from P. cocos suggested that targets other than topoisomerases may be involved in the antiproliferative activity.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University , Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium , Pingtung 944, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University , Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Astrid Henz
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 40447, Taiwan
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital , Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 40447, Taiwan
- Center for Molecular Medicine, China Medical University Hospital , Taichung 40447, Taiwan
| |
Collapse
|