1
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Petit R, Izambart J, Guillou M, da Silva Almeida JRG, de Oliveira Junior RG, Sol V, Ouk TS, Grougnet R, Quintans-Júnior LJ, Sitarek P, Thiéry V, Picot L. A Review of Phototoxic Plants, Their Phototoxic Metabolites, and Possible Developments as Photosensitizers. Chem Biodivers 2024; 21:e202300494. [PMID: 37983920 DOI: 10.1002/cbdv.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.
Collapse
Affiliation(s)
- Raphaëlle Petit
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Jonathan Izambart
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Mathieu Guillou
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | | | - Raimundo Gonçalves de Oliveira Junior
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Vincent Sol
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Tan-Sothea Ouk
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Raphaël Grougnet
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Lucindo José Quintans-Júnior
- Franco-Brazilian Network on Natural Products, FB2NP
- LANEF, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
| | | | - Valérie Thiéry
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| |
Collapse
|
3
|
Kiriyanthan RM, Radha A, Pandikumar P, Azhahianambi P, Madan N, Ignacimuthu S. Growth inhibitory effect of selected quinones from Indian medicinal plants against Theileria annulata. Exp Parasitol 2023; 254:108622. [PMID: 37758051 DOI: 10.1016/j.exppara.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Tropical Bovine Theileriosis, caused by the protozoan parasite Theileria annulata, poses a significant threat to cattle populations. Currently, Buparvaquone is the sole effective naphthoquinone drug commercially available for its treatment. In our research, we delved into the potential of naturally occurring quinones as alternative treatments. We isolated two quinones, emodin and chrysophanol, from Rheum emodi Wall, and two more, embelin and lawsone, from Embelia ribes Burm.f. and Lawsonia inermis L. respectively. We assessed the anti-Theileria efficacy of these quinones in vitro using MTT and flow cytometric assays on T. annulata-infected bovine lymphocytes. Additionally, we evaluated their safety on uninfected bovine Peripheral Blood Mononuclear Cells (PBMC) and Vero cells. Emodin emerged as a promising candidate, exhibiting an IC50 value of 4 μM, surpassing that of buparvaquone. Emodin also displayed relatively low LD50 values of 1.74 mM against uninfected PBMC and 0.87 mM against Vero cells, suggesting potential safety. Remarkably, emodin demonstrated a high cell absorption rate of 71.32%. While emodin's efficacy and bioavailability are encouraging, further research is imperative to validate its safety and effectiveness for treating Tropical Bovine Theileriosis.
Collapse
Affiliation(s)
- Rose Mary Kiriyanthan
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India
| | - A Radha
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India.
| | - Perumal Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627 002, India
| | - Palavesam Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - N Madan
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | | |
Collapse
|
4
|
de Morais FAP, Balbinot RB, Bakoshi ABK, Lazarin-Bidoia D, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Ueda-Nakamura T, de Oliveira Silva S, Caetano W, Nakamura CV. Advanced theranostic nanoplatforms for hypericin delivery in the cancer treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112782. [PMID: 37660488 DOI: 10.1016/j.jphotobiol.2023.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Biomodified coated-lipid vesicles were obtained using the DPPC lipid (L) and F127 copolymer linked covalently with spermine (SN), biotin (BT), and folic acid (FA), resulting in LF127-SN, LF127-BT, and LF127-FA nanoplatforms. The photosensitizer hypericin (HY) was incorporated into the nanosystem by a thin-film method and characterized by dynamic light scattering, zeta potential, encapsulation efficiency, and transmission electronic microscopy. The results provided a good level of stability for all nanoplatforms for at least 5 days as an aqueous dispersion. The in vitro serum stability showed that the HY-loaded LF127-SN has a lower tendency to form complexes with BSA protein than with its analogs. LF127-SN was the most stable HY formulation, followed by LF127-BT and LF127-FA, confirmed by the association constant (Kd) values: 600 μmol L-1, 1100 μmol L-1, 515 μmol L-1, and 378 μmol L-1 for LF127, LF127 FA, LF127-BT, and LF127-SN, respectively. The photodynamic potential of HY was accessed by cytotoxicity assays using Caco-2, B16-F10, L-929, and HaCat cells. HY-loaded LF127-SN revealed a significant increase in the selectivity compared to other nanoplatforms. HY-loaded in LF127-BT and LF127-SN showed distinct uptake and biodistribution after 2 h of intravenous application. All biomodified coated-lipids showed satisfactory metabolism within 72 h after application, without significant accumulation or residue in any vital organ. These results suggest that incorporating HY-loaded in these nanosystems may be a promising strategy for future applications, even with a small amount of binders to the coating copolymer (0.02% w/v). Furthermore, these results indicate that the LF127-SN showed remarkable superiority compared to other evaluated systems, being the most distinct for future photodynamic therapy and theranostic applications.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil.
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
5
|
Galinari CB, Biachi TDP, Gonçalves RS, Cesar GB, Bergmann EV, Malacarne LC, Kioshima Cotica ÉS, Bonfim-Mendonça PDS, Svidzinski TIE. Photoactivity of hypericin: from natural product to antifungal application. Crit Rev Microbiol 2023; 49:38-56. [PMID: 35171731 DOI: 10.1080/1040841x.2022.2036100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.
Collapse
Affiliation(s)
- Camila Barros Galinari
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Tiago de Paula Biachi
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Ma Q, Wang CZ, Sawadogo WR, Bian ZX, Yuan CS. Herbal Medicines for Constipation and Phytochemical Comparison of Active Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:723-732. [PMID: 35331086 DOI: 10.1142/s0192415x2250029x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constipation is a very common medical condition worldwide, negatively affecting patients' quality of life and healthcare system. Rhubarb, senna leaf, and aloe are three frequently used herbal medications for achieving regular bowel movement. Rhubarb is also a key ingredient in MaZiRenWan, a Chinese medicine formula used every so often for constipation in oriental countries. We reviewed and summarized the major chemical components from these three botanicals, including dianthrones, anthraquinone glycosides, free anthraquinones, and other polyphenols. The purgative actions of these constituents have been compared. Anthraquinone, especially its dianthrone compounds such as sennoside A and sennoside B, as natural stimulant laxatives, possesses significant effects to promote gastrointestinal motility and relieve functional constipation. Furthermore, the safety, reported side effects, and other benefits of anthraquinone compounds are presented. To date, many anti-constipation natural products are being used but their research is relatively limited, and thus, more investigations in this field are indeed needed.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China.,Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Wamtinga R Sawadogo
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Pereira LS, Camacho SA, Almeida AM, Gonçalves RS, Caetano W, DeWolf C, Aoki PH. Mechanisms of hypericin incorporation to explain the photooxidation outcomes in phospholipid biomembrane models. Chem Phys Lipids 2022; 244:105181. [DOI: 10.1016/j.chemphyslip.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 11/03/2022]
|
9
|
NİGUSSİE G, MELAK H, ENDALE ANNİSA M. Traditional Medicinal Uses, Phytochemicals, and Pharmacological Activities of Genus Rhamnus: A review. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.929188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Ochraceopyronide, a Rare α-Pyrone-C-lyxofuranoside from a Soil-Derived Fungus Aspergillus ochraceopetaliformis. Molecules 2021; 26:molecules26133976. [PMID: 34209863 PMCID: PMC8271807 DOI: 10.3390/molecules26133976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2–5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds—isolated for the first time from A. ochraceopetaliformis—were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.
Collapse
|
11
|
Bouhlel Chatti I, Ben Toumia I, Krichen Y, Maatouk M, Chekir Ghedira L, Krifa M. Assessment of Rhamnus alaternus Leaves Extract: Phytochemical Characterization and Antimelanoma Activity. J Med Food 2021; 25:910-917. [PMID: 34152839 DOI: 10.1089/jmf.2020.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhamnus alaternus (Rhamnaceae) has been used as a laxative, purgative, diuretic, antihypertensive, and depurative. However, few scientific research studies on its antimelanoma activity have been reported. This study aimed to investigate the in vitro antimelanoma effect of an enriched total oligomer flavonoid (TOF) extract, from R. alaternus, and to identify its phytochemical compounds. The chemical composition of TOF extract was assessed by HPLC-electrospray ionization tandem mass spectrometry (HPLC/ESI-MS2) analysis. Antimelanoma activity was determined on cultured tumor cell B16F10 by the crystal violet assay, the alkaline comet assay, acridine orange/ethidium bromide (AO/EB), annexin V-fluorescein isothiocyanate/ propidium iodide (V-FITC/PI) staining, the cell cycle distribution, and the wound healing assay. Regarding chemical composition, a mixture of quercetin diglucoside, quercetin-3-O-neohesperidoside, kaempferol-3-O-(2G-α-L-rhamnosyl)-rutinoside, rhamnetin hexoside, kaempferol-3-O-rutinoside, rhamnocitrin hexoside, pilosin hexoside, apigenin glucoside, and kaempferol-3-O-glucoside was identified as major phytochemical compounds of the extracts. TOF extract inhibits melanoma B16F10 cell proliferation in dose-dependent manner. The induction of apoptosis was confirmed by comet assay, AO/EB, and annexin V-FITC/PI test. TOF extract could also induce S phase cell cycle, inhibit, and delay the cell migration of B16F10 cells. The findings showed that TOF extract from R. alaternus could be a potentially good candidate for future use in alternative antimelanoma treatments.
Collapse
Affiliation(s)
- Ines Bouhlel Chatti
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
- Department of Biology and Geology, Higher Institute of Applied Science and Technology of Gabes, University of Gabes, Gabes, Tunisia
| | - Imene Ben Toumia
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Yosr Krichen
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
- Pharmacognosy Laboratory, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mouna Maatouk
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Leila Chekir Ghedira
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Mounira Krifa
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Amanda Pedroso de Morais F, Sonchini Gonçalves R, Souza Campanholi K, Martins de França B, Augusto Capeloto O, Lazarin-Bidoia D, Bento Balbinot R, Vataru Nakamura C, Carlos Malacarne L, Caetano W, Hioka N. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119173. [PMID: 33316657 DOI: 10.1016/j.saa.2020.119173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 05/22/2023]
Abstract
Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.
Collapse
Affiliation(s)
| | - Renato Sonchini Gonçalves
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Katieli Souza Campanholi
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Bruna Martins de França
- Department of Chemistry, Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave., 21941-909 Rio de Janeiro, RJ, Brazil
| | - Otávio Augusto Capeloto
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Luis Carlos Malacarne
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| |
Collapse
|
13
|
Nekkaa A, Benaissa A, Mutelet F, Canabady-Rochelle L. Rhamnusalaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants (Basel) 2021; 10:300. [PMID: 33669348 PMCID: PMC7920288 DOI: 10.3390/antiox10020300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Rhamnus alaternus, is a wild-growing shrub, belonging to the Rhamnaceae family. Widely distributed in the Mediterranean basin, R. alaternus is used in the usual medicine in numerous countries, mostly Tunisia, Algeria, Morocco, Spain, France, Italy, and Croatia. A large number of disorders-including dermatological complications, diabetes, hepatitis, and goiter problems-can be treated by the various parts of R. alaternus (i.e., roots, bark, berries, and leaves). Several bioactive compounds were isolated from R. alaternus, including flavonoids, anthocyanins, and anthraquinones, and showed several effects such as antioxidant, antihyperlipidemic, antigenotoxic, antimutagenic, antimicrobial, and antiproliferative. This review summarizes the updated information concerning the botanical description, distribution, extraction processes applied on R. alaternus, and its ethnopharmacology, toxicity, phytochemistry, and pharmacological effects.
Collapse
Affiliation(s)
- Amine Nekkaa
- Process Engineering Laboratory for Sustainable Development and Health Products, Department of Process Engineering, National Polytechnic School of Constantine—Malek Bennabi, Constantine 25000, Algeria
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Akila Benaissa
- Laboratory of Process Engineering for the Environment (LIPE), Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider University, Constantine 3, Constantine 25000, Algeria;
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | | |
Collapse
|
14
|
Damke GMZF, Damke E, de Souza Bonfim-Mendonça P, Ratti BA, de Freitas Meirelles LE, da Silva VRS, Gonçalves RS, César GB, de Oliveira Silva S, Caetano W, Hioka N, Souza RP, Consolaro MEL. Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sci 2020; 255:117858. [PMID: 32497635 DOI: 10.1016/j.lfs.2020.117858] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
At present, cervical cancer is the fourth leading cause of cancer among women worldwide with no effective treatment options. In this study we aimed to evaluate the efficacy of hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) photodynamic therapy (PDT) in a comprehensive panel of human cervical cancer-derived cell lines, including HeLa (HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and 18-positive), and C33A (HPV-negative), compared to a nontumorigenic human epithelial cell line (HaCaT). Were investigated: (i) cell cytotoxicity and phototoxicity, cellular uptake and subcellular distribution; (ii) cell death pathway and cellular oxidative stress; (iii) migration and invasion. Our results showed that HYP/P123 micelles had effective and selective time- and dose-dependent phototoxic effects on cervical cancer cells but not in HaCaT. Moreover, HYP/P123 micelles accumulated in endoplasmic reticulum, mitochondria and lysosomes, resulting in photodynamic cell death mainly by necrosis. HYP/P123 induced cellular oxidative stress mainly via type II mechanism of PDT and inhibited cancer cell migration and invasion mainly via MMP-2 inhibition. Taken together, our results indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat cervical cancers through PDT, suggesting they are worthy for in vivo preclinical evaluations.
Collapse
Affiliation(s)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Patrícia de Souza Bonfim-Mendonça
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Bianca Altrão Ratti
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Lyvia Eloiza de Freitas Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Vânia Ramos Sela da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Gabriel Batista César
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Raquel Pantarotto Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Av. Colombo, 5790, 87025-210 Maringá, Paraná, Brazil.
| |
Collapse
|
15
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
16
|
Aelami Z, Maghsoodlou MT, Heydari R, Yazdani-Elah-Abadi A. Utilizing an Old Idea for the Three-Component Synthesis of Anthraquinone-Scaffold-Based Enaminodiones (2,2-Diacylethenamines). Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1747096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zahra Aelami
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Malek Taher Maghsoodlou
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Reza Heydari
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
17
|
Mondal A, Saha N, Rajput A, Singh SK, Roy B, Husain SM. Chemoenzymatic reduction of citreorosein and its implications on aloe-emodin and rugulosin C (bio)synthesis. Org Biomol Chem 2019; 17:8711-8715. [PMID: 31549123 DOI: 10.1039/c9ob01690b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoenzymatic reduction of citreorosein by the NADPH-dependent polyhydroxyanthracene reductase from Cochliobolus lunatus or MdpC from Aspergillus nidulans in the presence of Na2S2O4 gave access to putative biosynthetic intermediates, (R)-3,8,9,10-tetrahydroxy-6-(hydroxymethyl)-3,4-dihydroanthracene-1(2H)-one and its oxidized form, (R)-3,4-dihydrocitreorosein. Herein, we discuss the implications of these results towards the (bio)synthesis of aloe-emodin and (+)-rugulosin C in fungi.
Collapse
Affiliation(s)
- Amit Mondal
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. smhusain.cbmr@gmail. com
| | - Nirmal Saha
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. smhusain.cbmr@gmail. com
| | - Anshul Rajput
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. smhusain.cbmr@gmail. com
| | - Shailesh Kumar Singh
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. smhusain.cbmr@gmail. com
| | - Brindaban Roy
- Department of Chemistry, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Syed Masood Husain
- Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. smhusain.cbmr@gmail. com
| |
Collapse
|
18
|
de Morais FAP, Enumo A, Gonçalves RS, Cesar GB, Miranda N, Vilsinski BH, da Silva Junior RC, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity. Part III: in vitro evaluation in different nanocarriers against trypomastigotes of Trypanosoma cruzi. Photochem Photobiol Sci 2019; 18:487-494. [PMID: 30534717 DOI: 10.1039/c8pp00444g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas is a parasitic endemic disease caused by the protozoan Trypanosoma cruzi. It represents a strong threat to public health due to its strong resistance against commonly available drugs. We studied the in vitro ability to inactivate the trypomastigote form of this parasite using photodynamic inactivation of microorganisms (or antimicrobial Photodynamic Therapy, aPDT). For this, we chose to use the photosensitizer hypericin (Hyp) formulated in ethanol/water (1% v/v) and Hyp loaded in the dispersion of different aqueous nanocarrier systems. These included polymeric micelles of F-127 and P-123 (both Pluronic™ surfactants), and liposomal vesicles of phospholipid 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These systems with Hyp had their activity compared against trypomastigote forms under light and in the dark. Hyp revealed a high level of effectiveness to eradicate protozoa in vitro. Samples at concentrations higher than 0.8 μmol L-1 of Hyp in Pluronic micelles showed efficacy even in the dark, with the EC50 around (6-8) μmol L-1. Therefore, Hyp/Pluronics can be used also as a chemotherapeutic agent. The best result for EC50 is at approximately 0.31 μmol L-1 for illuminated systems of Hyp in F-127 micelles. For Hyp in P-123 micelles under light, the results also led to a low EC50 value of 0.36 μmol L-1. The highest value of EC50 was 2.22 μmol L-1, which was found for Hyp/DPPC liposomes under light. For the Hyp-free (ethanol/water, 1% v/v)/illuminated group, the EC50 value was 0.37 μmol L-1, which also is a value that shows effectiveness. However, in free-form, Hyp is not protected against blood components, unlike when Hyp is loaded into the nanocarriers.
Collapse
Affiliation(s)
| | - Adalberto Enumo
- Departamento de Química, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | | | - Gabriel Batista Cesar
- Departamento de Química, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Nathielle Miranda
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | | | | | - Celso Vataru Nakamura
- Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Wilker Caetano
- Departamento de Química, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
19
|
de Morais FAP, Gonçalves RS, Vilsinski BH, de Oliveira ÉL, Rocha NL, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposome. PART I: biomimetism of loading, location, interactions and thermodynamic properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:118-127. [PMID: 30513414 DOI: 10.1016/j.jphotobiol.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Hypericin (Hyp) is a potential photosensitizer drug for Photodynamic Therapy (PDT). However, the high lipophilicity of Hyp prevents its preparation in water. To overcome the Hyp solubility problem, this study uses the liposomal vesicle of DPPC. Otherwise liposome is also one of the most employed artificial systems that mimetizes cell membranes. Our present focus is the interaction of Hyp into DPPC liposome as biomimetic system. We studied the loading, interaction, and localization of Hyp (2.8 μmol L-1) in DPPC (5.4 mmol L-1) liposomes, as well as the thermodynamic aspects of Hyp-liposomes. The Hyp addition to the DPPC liposome dispersion showed a Encapsulation Efficiency for [Hyp] = 2.8 μmol L-1 in [DPPC] = 5.3 mmol L-1 of 74.3% and 89.3% at 30.0 and 50.0 °C, respectively. The encapsulation profile obeys a pseudo first-order kinetic law, with a rate constant of 1.26 × 10-3 s-1 at 30.0 °C. Also the data suggests this reaction is preceded by an extremely rapid step. A study on the binding of Hyp/DPPC liposomes (Kb), performed at several temperatures, showed results of 4.8 and 18.5 × 103 L mol-1 at 293 and 323 K, respectively. Additionally, a decrease was observed in the ΔG of the Hyp/DPPC interaction (-20.6 and - 26.4 kL mol-1 at 293 and 323 K, respectively). The resulting ΔH > 0 with ΔS < 0 shows that the entropy is driven the process. Studies of Hyp location in the liposome at 298 K revealed the existence of two different Hyp populations with a Stern-Volmer constant (Ksv) of 4.65 and 1.87 L mol-1 using iodide as an aquo-suppressor at concentration ranged from 0 to 0.025 mol L-1 and from 0.025 to 0.150 mol L-1, respectively. Furthermore, studies of Fluorescence Resonance Energy Transfer, using DPH as a donor and Hyp as an acceptor, revealed that Hyp is allocated in different binding sites of the liposome. This is dependent on temperature. Thermal studies revealed that the Hyp/DPPC formulation presented reasonable stability. Size and morphological investigations showed that Hyp incorporation increases the average size of DPPC liposomes from 116 to 154 nm. The study demonstrated the ability of the Hyp-DPPC liposome as an interesting system for drug delivery system that can be applied to PDT.
Collapse
Affiliation(s)
- Flávia A P de Morais
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Renato S Gonçalves
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Bruno H Vilsinski
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Évelin L de Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Nicola L Rocha
- Instituto de Química, Universidade Estadual de Campinas, Rua Carlos Gomes 241- Campinas - SP, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Wilker Caetano
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| |
Collapse
|
20
|
Emodin, Physcion, and Crude Extract of Rhamnus sphaerosperma var. pubescens Induce Mixed Cell Death, Increase in Oxidative Stress, DNA Damage, and Inhibition of AKT in Cervical and Oral Squamous Carcinoma Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2390234. [PMID: 30057674 PMCID: PMC6051077 DOI: 10.1155/2018/2390234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022]
Abstract
There have been few studies on the pharmacological properties of Rhamnus sphaerosperma var. pubescens, a native Brazilian species popularly known as “fruto-de-pombo.” The aim of this study was to investigate the scavenging capacity of emodin, physcion, and the ethanolic crude extract of Rhamnus sphaerosperma var. pubescens against reactive oxygen and nitrogen species, as well as their role and plausible mechanisms in prompting cell death and changes in AKT phosphorylation after cervical (SiHa and C33A) and oral (HSC-3) squamous cell carcinoma treatments. Emodin was shown to be the best scavenger of NO• and O2•−, while all samples were equally effective in HOCl/OCl− capture. Emodin, physcion, and the ethanolic extract all exhibited cytotoxic effects on SiHa, C33A, HSC-3, and HaCaT (immortalized human keratinocytes, nontumorigenic cell line), involving mixed cell death (apoptosis and necrosis) independent of the caspase activation pathway. Emodin, physcion, and the ethanolic extract increased intracellular oxidative stress and DNA damage. Emodin decreased the activation of AKT in all tumor cells, physcion in HSC-3 and HaCaT cells, and the ethanolic extract in C33A and HaCaT cells, respectively. The induction of cancer cell death by emodin, physcion, and the ethanolic crude extract of Rhamnus sphaerosperma var. pubescens was related to an increase in intracellular oxidative stress and DNA damage and a decrease in AKT activation. These molecules are therefore emerging as interesting candidates for further study as novel options to treat cervical and oral carcinomas.
Collapse
|
21
|
Gonçalves RS, César GB, Barbosa PM, Hioka N, Nakamura CV, Bruschi ML, Caetano W. Optimized protocol for multigram preparation of emodin anthrone, a precursor in the hypericin synthesis. Nat Prod Res 2018; 33:1196-1199. [DOI: 10.1080/14786419.2018.1457661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | | | - Noboru Hioka
- Department of Chemistry, State University of Maringá , Maringá, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringá , Maringá, Brazil
| |
Collapse
|
22
|
Ben Ammar R, Miyamoto T, Chekir-Ghedira L, Ghedira K, Lacaille-Dubois MA. Isolation and identification of new anthraquinones from Rhamnus alaternus L and evaluation of their free radical scavenging activity. Nat Prod Res 2018. [PMID: 29533086 DOI: 10.1080/14786419.2018.1446135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
From the butanolic and the ethyl acetate extracts of Rhamnus alaternus L root bark and leaves, three new anthraquinone glycosides, alaternosides A-C (1,4,6,8 tetrahydroxy-3 methyl anthraquinone 1-O-ß-D-glucopyranosyl-4,6-di-O-α-L-rhamnopyranoside (1); 1,2,6,8 tetrahydroxy-3 methyl anthraquinone 8-O-ß-D-glucopyranoside (2) and 1, 6 dihydroxy-3 methyl 6 [2'-Me (heptoxy)] anthraquinone (3)) were isolated and elucidated together with the two known anthraquinone glycosides, Physcion-8-O-rutinoside (4) and emodin-6-O-α-L-rhamnoside (5) as well as with the known kaempferol-7-methylether (6), β-sitosterol (7) and β-sitosterol-3-O-glycoside (8). Their chemical structures were elucidated using spectroscopic methods (1D-, 2D-NMR and FAB-MS). Free radical scavenging activity of the isolated compounds was evaluated by their ability to scavenge DPPH. free radicals. Compounds (3), (4) and (6) showed the highest activity with IC50 values of 9.46, 27.68 and 2.35 μg/mL, respectively.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- a Department of Biological Sciences, College of Sciences , King Faisal University , Al Hufuf , Saudi Arabia.,b Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria , Hammam-lif , Tunisia
| | - Tomofumi Miyamoto
- c Graduate School of Pharmaceutical Sciences , Kyushu University , Fukuoka , Japan
| | - Leila Chekir-Ghedira
- d Unité de Substances Naturelles Bioactives et Biotechnologie (UR12ES12), Faculté de pharmacie de Monastir , Université de Monastir , Monastir , Tunisia.,e Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine , University of Monastir , Monastir , Tunisia
| | - Kamel Ghedira
- d Unité de Substances Naturelles Bioactives et Biotechnologie (UR12ES12), Faculté de pharmacie de Monastir , Université de Monastir , Monastir , Tunisia
| | - Marie-Aleth Lacaille-Dubois
- f Laboratoire de Pharmacognosie , UMIB, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté , Dijon Cedex , France
| |
Collapse
|