1
|
Ren J, Wu PP, Xue JH, Zhao WL, Zhu YH, Chen YY, Yang QJ, Luo Q, Cheng X, Bi EG. Discovery of an immunosuppressive functional metabolite from the insect-derived endophytic Aspergillus taichungensis SMU01. Fitoterapia 2024; 176:106007. [PMID: 38744384 DOI: 10.1016/j.fitote.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping-Ping Wu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China; School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-Hao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Han Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Yang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jun Yang
- Department of Stomatology, Jiangmen Central Hospital, Jiangmen 529000, China
| | - Qi Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - Xia Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Thapa BB, Huo C, Budhathoki R, Chaudhary P, Joshi S, Poudel PB, Magar RT, Parajuli N, Kim KH, Sohng JK. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int J Mol Sci 2024; 25:4193. [PMID: 38673777 PMCID: PMC11050201 DOI: 10.3390/ijms25084193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.
Collapse
Affiliation(s)
- Bijaya Bahadur Thapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Pratiksha Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| |
Collapse
|
3
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Xiao YF, Xu JY, Cui LZ, Wang CB, Lei Y, Liao XJ, Xu SH, Zhao BX. A new amide from the marine sponge Haliclona baeri. Nat Prod Res 2023; 37:1-7. [PMID: 34180744 DOI: 10.1080/14786419.2021.1941950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new amide, baeriamide (1), along with nine known diketopiperazines (2-10), was isolated from the marine sponge Haliclona baeri. Their structures were identified by the means of UV, IR, MS and NMR. The absolute configuration of 1 was established by Marfey's method and comparing the specific optical rotation with the known compound HCO-Val-Gly methyl ester. Compound 1 was derived from dehydration of formylated L-valine with γ-amino-butanoic acid methyl ester. Compounds 2-10 were isolated from the genus of Haliclona for the first time. The absolute confirmation of 7 was confirmed first by the means of single-crystal X-ray diffraction. The cytotoxic, antibacterial, antiviral and antifouling activities of these compounds were also tested. However, none of them exhibited significant bioactivities.
Collapse
Affiliation(s)
- Yan-Fang Xiao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Jia-Yi Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Le-Zhi Cui
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Can-Bin Wang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yu Lei
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Shi-Hai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
5
|
The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. DIVERSITY 2022. [DOI: 10.3390/d15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioprospecting of novel antibiotics has been the conventional norm of research fostered by researchers worldwide to combat drug resistance. With the exhaustion of incessant leads, the search for new chemical entities moves into uncharted territories such as the deep sea. The deep sea is a furthermost ecosystem with much untapped biodiversity thriving under extreme conditions. Accordingly, it also encompasses a vast pool of ancient natural products. Actinobacteria are frequently regarded as the bacteria of research interest due to their inherent antibiotic-producing capabilities. These interesting groups of bacteria occupy diverse ecological habitats including a multitude of different deep-sea habitats. In this review, we provide a recent update on the novel species and compounds of actinomycetes from the deep-sea environments within a period of 2016–2022. Within this period, a total of 24 new species of actinomycetes were discovered and characterized as well as 101 new compounds of various biological activities. The microbial communities of various deep-sea ecosystems are the emerging frontiers of bioprospecting.
Collapse
|
6
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|
7
|
Ramlawi S, Aitken A, Abusharkh S, McMullin DR, Avis TJ. Arthropeptide A, an antifungal cyclic tetrapeptide from Arthrobacter psychrophenolicus isolated from disease suppressive compost. Nat Prod Res 2021; 36:5715-5723. [PMID: 34933636 DOI: 10.1080/14786419.2021.2018434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In an effort to describe bioactive antifungal compounds from antagonistic bacteria with potential for biocontrol of plant pathogens, a strain of Arthrobacter psychrophenolicus was collected from plant disease suppressive compost prepared from composted material of marine origin. Few natural products have been characterized from the non-filamentous Actinobacteria genus Arthrobacter. A new cyclic tetrapeptide, cyclo-(L-Pro-L-Leu-L-γHyp-L-Tyr); arthropeptide A (1), was isolated from the EtOAc soluble culture filtrate extract of A. psychrophenolicus M9-17 grown in MOLP broth. Its structure was confirmed by HRMS, interpretation of NMR data, and a modified Marfey's method. Arthropeptide A (1) displayed antifungal activity towards Alternaria alternata, the causal agent of disease in numerous host plant species, which had shown the previous susceptibility to A. psychrophenolicus. The newly identified compound may be responsible, in part, for the inhibitory activity of the bacterium against fungal plant pathogens.
Collapse
Affiliation(s)
- Serine Ramlawi
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Alex Aitken
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Sawsan Abusharkh
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Tyler J Avis
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
8
|
Sun C, Mudassir S, Zhang Z, Feng Y, Chang Y, Che Q, Gu Q, Zhu T, Zhang G, Li D. Secondary Metabolites from Deep-Sea Derived Microorganisms. Curr Med Chem 2021; 27:6244-6273. [PMID: 31250751 DOI: 10.2174/0929867326666190618153950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Microorganisms obtained from the deep sea are a rich source of marine natural products with distinctive chemical structures and bioactivities. In this review, we will provide a retrospective of outstanding research within the scope of deep-sea (≥1000 m) microbial natural products, which has produced up to 442 compounds by the end of 2017. Approximetely, 60% of these structures have demonstrated various biological activities with more than 30% showing cytotoxic function. In this review, we particularly summarize those successful research on secondary metabolites produced by deep-sea derived microorganisms with inclusion of structural characteristics, biological activities, together with biogenetic origins and taxonomic features of the source microorganisms, from which, we expect to provide more comprehensive understanding of small molecules obtained from deep-sea environment and benefit the ongoing scholarly endeavors in the search for novel pharmaceutical agents from the deep-sea derived microorganisms.
Collapse
Affiliation(s)
- Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Shah Mudassir
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Zhenzhen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Yanyan Feng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean
University of China, Qingdao 266003, P.R. China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| |
Collapse
|
9
|
Wang YN, Meng LH, Wang BG. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Mar Drugs 2020; 18:E614. [PMID: 33276592 PMCID: PMC7761599 DOI: 10.3390/md18120614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Deep sea has an extreme environment which leads to biodiversity of microorganisms and their unique physical and biochemical mechanisms. Deep-sea derived microorganisms are more likely to produce novel bioactive substances with special mechanism of action for drug discovery. This article reviews secondary metabolites with biological activities such as anti-tumor, anti-bacterial, anti-viral, and anti-inflammatory isolated from deep-sea fungi and bacteria during 2018-2020. Effective methods for screening and obtaining natural active compounds from deep-sea microorganisms are also summarized, including optimizing the culture conditions, using genome mining technology, biosynthesis and so on. The comprehensive application of these methods makes broader prospects for the development and application of deep sea microbial bioactive substances.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China;
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China;
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China;
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| |
Collapse
|
10
|
del Pozo J, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. Streamlined Catalytic Enantioselective Synthesis of α-Substituted β,γ-Unsaturated Ketones and Either of the Corresponding Tertiary Homoallylic Alcohol Diastereomers. J Am Chem Soc 2020; 142:18200-18212. [PMID: 33016068 PMCID: PMC7775104 DOI: 10.1021/jacs.0c08732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A widely applicable, practical, and scalable strategy for efficient and enantioselective synthesis of β,γ-unsaturated ketones that contain an α-stereogenic center is disclosed. Accordingly, aryl, heteroaryl, alkynyl, alkenyl, allyl, or alkyl ketones that contain an α-stereogenic carbon with an alkyl, an aryl, a benzyloxy, or a siloxy moiety can be generated from readily available starting materials and by the use of commercially available chiral ligands in 52-96% yield and 93:7 to >99:1 enantiomeric ratio. To develop the new method, conditions were identified so that high enantioselectivity would be attained and the resulting α-substituted NH-ketimines, wherein there is strong C═N → B(pin) coordination, would not epimerize before conversion to the derived ketone by hydrolysis. It is demonstrated that the ketone products can be converted to an assortment of homoallylic tertiary alcohols in 70-96% yield and 92:8 to >98:2 dr-in either diastereomeric form-by reactions with alkyl-, aryl-, heteroaryl-, allyl-, vinyl-, alkynyl-, or propargyl-metal reagents. The utility of the approach is highlighted through transformations that furnish other desirable derivatives and a concise synthesis route affording more than a gram of a major fragment of anti-HIV agents rubriflordilactones A and B and a specific stereoisomeric analogue.
Collapse
Affiliation(s)
- Juan del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Shaochen Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Ryan P. Conger
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
11
|
Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep 2020; 38:24-82. [PMID: 32672280 DOI: 10.1039/d0np00021c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: Early 2008 until the end of 2019Microorganisms which survive (extreme-tolerant) or even prefer (extremophilic) living at the limits of pH, temperature, salinity and pressure found on earth have proven to be a rich source of novel structures. In this update we summarise the wide variety of new molecules which have been isolated from extremophilic and extreme-tolerant microorganisms since our original 2009 review, highlighting the range of bioactivities these molecules have been reported to possess.
Collapse
Affiliation(s)
- Zoe E Wilson
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | |
Collapse
|
12
|
Wang ZM, Wang CT, Shen CH, Wang ST, Mao JQ, Li Z, Gänzle M, Mao J. Microbiota stratification and succession of amylase-producing Bacillus in traditional Chinese Jiuqu (fermentation starters). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3544-3553. [PMID: 32242927 DOI: 10.1002/jsfa.10405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Jiuqu are vital saccharifying and fermenting agents for Chinese fermented foods. Natural ventilation during Jiuqu fermentation causes changes in temperature, oxygen and moisture content, resulting in mass and heat gradients from the outer to inner areas of Jiuqu blocks. In the present study, microbiota stratification in Jiuqu was investigated by single molecule real-time sequencing and culture isolation. The contributors of Bacillus to amylase activity of Jiuqu and the dynamics of their biomass during Jiuqu fermentation were also analyzed. RESULTS The dominant orders, genera and species between the inner and outer layers of Huangjiu qu (HJQ) were similar, although they displayed greater variance in two layers of Baijiu qu (BJQ). Bacillus possessed the highest diversity (including 27 species) in Jiuqu. Bacillus licheniformis, Bacillus altitudinis, Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus megaterium were most prevalent in HJQ, whereas B. licheniformis, B. amyloliquefaciens and Bacillus cereus were dominant in BJQ. Isolates of B. amyloliquefaciens, B. subtilis and B. cereus exhibited high activities of amylase and glucoamylase. Quantification of Bacillus members possessing genes of α-amylase revealed that B. cereus and B. licheniformis were the most dominant microbes to secret α-amylase in Jiuqu and their biomass were increasing during Jiuqu fermentation. CONCLUSION The present study demonstrates the microbial distribution in different layers of Jiuqu and clarifies the Bacillus species processing the activity of α-amylase. These results will help industries control the quality of Jiuqu by rationally selecting starters and optimizing their microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Agriculture and Food Engineering, Shandong University of Technology, Zibo, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng-Tao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie-Qi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Zhen Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, China
| |
Collapse
|
13
|
Ding T, Yang LJ, Zhang WD, Shen YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964-21988. [PMID: 35518871 PMCID: PMC9067109 DOI: 10.1039/c9ra03579f] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Actinomycetes are outstanding and fascinating sources of potent bioactive compounds, particularly antibiotics. In recent years, rare actinomycetes have had an increasingly important position in the discovery of antibacterial compounds, especially Micromonospora, Actinomadura and Amycolatopsis. Focusing on the period from 2008 to 2018, we herein summarize the structures and bioactivities of secondary metabolites from rare actinomycetes, involving 21 genera.
Collapse
Affiliation(s)
- Ting Ding
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Luo-Jie Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Wei-Dong Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| | - Yun-Heng Shen
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| |
Collapse
|
14
|
Sayed A, Abdel‐Wahab N, Hassan H, Abdelmohsen U. Saccharopolyspora
: an underexplored source for bioactive natural products. J Appl Microbiol 2019; 128:314-329. [DOI: 10.1111/jam.14360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/19/2019] [Accepted: 06/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- A.M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy Nahda University Beni‐Suef Egypt
| | - N.M. Abdel‐Wahab
- Department of Pharmacognosy, Faculty of Pharmacy Minia University Minia Egypt
| | - H.M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy Beni‐Suef University Beni‐Suef Egypt
| | - U.R. Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy Minia University Minia Egypt
| |
Collapse
|
15
|
Lin YK, Xie CL, Xing CP, Wang BQ, Tian XX, Xia JM, Jia LY, Pan YN, Yang XW. Cytotoxic p-terphenyls from the deep-sea-derived Aspergillus candidus. Nat Prod Res 2019; 35:1627-1631. [PMID: 31232100 DOI: 10.1080/14786419.2019.1633651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
From the deep-sea-derived fungus Aspergillus candidus, one novel (1) and three known (2-4) p-terphenyl derivates were isolated. The structure of the new compound was established mainly on the basis of extensive analysis of 1D and 2D NMR data. All four isolates were tested for in vitro anti-food allergic and antitumor bioactivities. Compounds 3 and 4 showed potent antiproliferative effect against four cancer cells of Hela, Eca-109, Bel-7402, and PANC-1 with IC50 values ranging from 5.5 μM to 9.4 μM.
Collapse
Affiliation(s)
- Yu-Kun Lin
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Cui-Ping Xing
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Bao-Qu Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiao-Xue Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jin-Mei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ling-Yun Jia
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
16
|
Moon K, Xu F, Seyedsayamdost MR. Cebulantin, a Cryptic Lanthipeptide Antibiotic Uncovered Using Bioactivity‐Coupled HiTES. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyuho Moon
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
| | - Fei Xu
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
- Department of Molecular BiologyPrinceton University USA
| |
Collapse
|
17
|
Moon K, Xu F, Seyedsayamdost MR. Cebulantin, a Cryptic Lanthipeptide Antibiotic Uncovered Using Bioactivity-Coupled HiTES. Angew Chem Int Ed Engl 2019; 58:5973-5977. [PMID: 30843641 DOI: 10.1002/anie.201901342] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 01/22/2023]
Abstract
The majority of natural product biosynthetic gene clusters in bacteria are silent under standard laboratory growth conditions, making it challenging to uncover any antibiotics that they may encode. Herein, bioactivity assays are combined with high-throughput elicitor screening (HiTES) to access cryptic, bioactive metabolites. Application of this strategy in Saccharopolyspora cebuensis, with inhibition of Escherichia coli growth as a read-out, led to the identification of a novel lanthipeptide, cebulantin. Extensive NMR spectroscopic analysis allowed the elucidation of the structure of cebulantin. Subsequent bioactivity assays revealed it to be an antibiotic selective for Gram-negative bacteria, especially against Vibrio species. This approach, referred to as bioactivity-HiTES, has the potential to uncover cryptic metabolites with desired biological activities that are hidden in microbial genomes.
Collapse
Affiliation(s)
- Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, USA
| |
Collapse
|
18
|
Lin WX, Xie CL, Zhou M, Xia ML, Zhou TT, Chen HF, Yang XW, Yang Q. Chemical constituents from the deep sea-derived Streptomyces xiamenensis MCCC 1A01570 and their effects on RXRα transcriptional regulation. Nat Prod Res 2018; 34:1461-1464. [DOI: 10.1080/14786419.2018.1508148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Xiang Lin
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Mi Zhou
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Man-Li Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Ting-Ting Zhou
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Hai-Feng Chen
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, 361005, China
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Quan Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|