1
|
Investigation on Nutritional, Phytochemical, and Antioxidant Abilities of Various Traditional Rice Varieties. Appl Biochem Biotechnol 2022; 195:2719-2742. [PMID: 36435898 DOI: 10.1007/s12010-022-04264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/28/2022]
Abstract
Rice (Oryza sativa L.) is a popular grain that is consumed by almost half of the world's population. Rice has several distinct breeds classified as traditional and ancient grains. The consumption of rice by 60% of the world's population is a staple food. Entire grain rice, often known as brown rice, is the unpolished counterpart of white rice, containing bran, germ, and endosperm. Eating whole-grain rice is linked to many health benefits; thus, scientists have focused on identifying and quantifying bioactive chemicals in this meal. The present study assessed the physio-chemical, cooking attributes, mineral contents, phytochemicals, and free radical scavenging capabilities of conventional rice cultivars using known approaches according to particle size analysis. Rice grain lengths varied between 4.10 ± 16 and 6.20 ± 007. The length and thickness ratios of rice were not substantially different (p > 0.05). Kattuyanam has the maximum protein content (9.99 ± 06%) of all the rice varieties that were physio-chemical investigated. It also has highest phenolic content and antioxidant properties compared to gallic acid equivalent (334.900 ± 61 g) (GAE)/100 g, followed by anthocyanins and flavonoids. Total phenolic content and phenolic fractions of the HPLC profile in tested landraces indicate the presence of bioactive substances derived from traditional rice cultivars and a range of phytonutrients, including phenol, revealing their healthy potentials in the present study.
Collapse
|
2
|
Islam MS, Liu J, Jiang L, Zhang C, Liang Q. Folate content in fresh corn: Effects of harvest time, storage and cooking methods. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Ashokkumar K, Govindaraj M, Vellaikumar S, Shobhana VG, Karthikeyan A, Akilan M, Sathishkumar J. Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography-Mass Spectrometry Analysis. Front Nutr 2020; 7:599119. [PMID: 33363195 PMCID: PMC7755633 DOI: 10.3389/fnut.2020.599119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the major cereal crops cultivated across the world, particularly in Southeast Asia with 95% of global production. The present study was aimed to evaluate the total phenolic content (TPC) and to profile all the volatile organic compounds (VOCs) of eight popular traditional and two modern rice varieties cultivated in South India. Thirty-one VOCs were estimated by gas chromatography–mass spectrometry (GC-MS). The identified volatile compounds in the 10 rice varieties belong to the chemical classes of fatty acids, terpenes, alkanes, alkenes, alcohols, phenols, esters, amides, and others. Interestingly, most of the identified predominant components were not identical, which indicate the latent variation among the rice varieties. Significant variations exist for fatty acids (46.9–76.2%), total terpenes (12.6–30.7%), total phenols (0.9–10.0%), total aliphatic alcohols (0.8–5.9%), total alkanes (0.5–5.1%), and total alkenes (1.0–4.9%) among the rice varieties. Of all the fatty acid compounds, palmitic acid, elaidic acid, linoleic acid, and oleic acid predominantly varied in the range of 11.1–33.7, 6.1–31.1, 6.0–28.0, and 0.7–15.1%, respectively. The modern varieties recorded the highest palmitic acid contents (28.7–33.7%) than the traditional varieties (11.1–20.6%). However, all the traditional varieties had higher linoleic acid (10.0–28.0%) than the modern varieties (6.0–8.5%). Traditional varieties had key phenolic compounds, stearic acid, butyric acid, and glycidyl oleate, which are absent in the modern varieties. The traditional varieties Seeraga samba and Kichilli samba had the highest azulene and oleic acid, respectively. All these indicate the higher variability for nutrients and aroma in traditional varieties. These varieties can be used as potential parents to improve the largely cultivated high-yielding varieties for the evolving nutritional market. The hierarchical cluster analysis showed three different clusters implying the distinctness of the traditional and modern varieties. This study provided a comprehensive volatile profile of traditional and modern rice as a staple food for energy as well as for aroma with nutrition.
Collapse
Affiliation(s)
- Kaliyaperumal Ashokkumar
- Crop Improvement, Cardamom Research Station, Kerala Agricultural University, Pampadumpara, India.,School of Agriculture, PRIST Deemed University, Thanjavur, India
| | - Mahalingam Govindaraj
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - V G Shobhana
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | | |
Collapse
|
4
|
Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Front Genet 2020; 11:414. [PMID: 32547594 PMCID: PMC7274173 DOI: 10.3389/fgene.2020.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
Globally, two billion people suffer from micronutrient deficiencies. Cereal grains provide more than 50% of the daily requirement of calories in human diets, but they often fail to provide adequate essential minerals and vitamins. Cereal crop production in developing countries achieved remarkable yield gains through the efforts of the Green Revolution (117% in rice, 30% in wheat, 530% in maize, and 188% in pearl millet). However, modern varieties are often deficient in essential micronutrients compared to traditional varieties and land races. Breeding for nutritional quality in staple cereals is a challenging task; however, biofortification initiatives combined with genomic tools increase the feasibility. Current biofortification breeding activities include improving rice (for zinc), wheat (for zinc), maize (for provitamin A), and pearl millet (for iron and zinc). Biofortification is a sustainable approach to enrich staple cereals with provitamin A, carotenoids, and folates. Significant genetic variation has been found for provitamin A (96-850 μg and 12-1780 μg in 100 g in wheat and maize, respectively), carotenoids (558-6730 μg in maize), and folates in rice (11-51 μg) and wheat (32.3-89.1 μg) in 100 g. This indicates the prospects for biofortification breeding. Several QTLs associated with carotenoids and folates have been identified in major cereals, and the most promising of these are presented here. Breeding for essential nutrition should be a core objective of next-generation crop breeding. This review synthesizes the available literature on folates, provitamin A, and carotenoids in rice, wheat, maize, and pearl millet, including genetic variation, trait discovery, QTL identification, gene introgressions, and the strategy of genomics-assisted biofortification for these traits. Recent evidence shows that genomics-assisted breeding for grain nutrition in rice, wheat, maize, and pearl millet crops have good potential to aid in the alleviation of micronutrient malnutrition in many developing countries.
Collapse
Affiliation(s)
| | - Mahalingam Govindaraj
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - V. G. Shobhana
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Traditional Uses, Phytochemistry, and Pharmacological Properties of Zingiber officinale Essential Oil and Extracts. ACTA ACUST UNITED AC 2020. [DOI: 10.4018/978-1-7998-2524-1.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Ginger (Zingiber officinale) has been traditionally employed in south East Asia as well as India and China for treatment of nausea, asthma, fever, vomiting, cough, constipation, pain, arthritis, inflammation, etc. This chapter discusses the phytochemical composition and pharmacological studies of ginger extracts, ginger essential oil (GEO), and active bioactive constituents. The essential oil of fresh and dry ginger was ranged between 0.2% - 2.62% and 0.72% - 4.17% respectively. The bioactive constituent zingiberene, β-sesquiphellandrene, curcumene, β-bisabolene, β-farnesene, camphene, and gingerol and shogal are the major constituents in ginger extracts. These compounds are chief bioactive substances responsible for pharmacological activities such antioxidant, antidiabetic, anticancer, anticoagulant, antiradiation, anti-inflammatory, gastrointestinal, antimicrobial, cardiovascular, anti-obesity, and weight loss effects. Future research needs to investigate the suitable duration, maximum dosage of ginger, concerns of overdosage, and its side effects in animal models and humans.
Collapse
|
7
|
Fatima Z, Jin X, Zou Y, Kaw HY, Quinto M, Li D. Recent trends in analytical methods for water-soluble vitamins. J Chromatogr A 2019; 1606:360245. [PMID: 31122728 DOI: 10.1016/j.chroma.2019.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
In this review, recent advances in the analysis of water-soluble vitamins (WSVs) have been reported considering the advantages and disadvantages of various extraction, separation and detection techniques, commonly used for their quantification. Acid hydrolysis, enzyme treatment, SPE based methods and some other extraction methods have been discussed. Particular attention has been devoted to the analytical techniques based on liquid chromatography and electrophoresis. Furthermore, suitability and selectivity of hydrophilic interaction liquid chromatography (HILIC) for WSVs has been discussed in detail. Problems related to these techniques and their possible solutions have also been considered. Special focus has been given to the applications of liquid chromatography (since 2014-2019) for the simultaneous analysis of WSVs and their homologous in complex food samples.
Collapse
Affiliation(s)
- Zakia Fatima
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Xiangzi Jin
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Maurizio Quinto
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China; SAFE - Department of Science of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|