1
|
Minh PH, Anh PTV, Tung BT, Dung HM, Trang TTT, Nhung PTH, Hang NT, Nguyet NTM, Phong NV, Vinh LB, Thanh MP. Efficacy of Jasminum subtriplinerve Extract against 7,12-Dimethylbenz[ a]anthracene-Induced Cancer in Mice. J Microbiol Biotechnol 2024; 34:2173-2183. [PMID: 39317690 PMCID: PMC11637824 DOI: 10.4014/jmb.2407.07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Jasminum subtriplinerve Blume tea is a traditional Vietnamese medicine used to treat impetigo, menstruation issues, and painful menstrual hematometra. Previous studies have shown that extracts and isolated compounds from J. subtriplinerve possess diverse pharmacological properties, such as antioxidant, antibacterial, and antidiabetic effects. However, their potential anticancer effects and underlying mechanisms of action have not been clear. Here, we examined the effects of J. subtriplinerve extracts against three human cancer cell lines. We also conducted in vivo analyses using a mouse model of 7,12-dimethylbenz[a]anthracene-induced breast cancer, including an investigation of changes in histological sections. The effect of the J. subtriplinerve ethyl acetate fraction on cytokine levels (IL-2, PGE2, TNF-α) in serum was determined using ELISA kits. Results showed that the ethyl acetate (EtOAc) fraction had the highest anti-proliferative activity (IC50 = 13.7 mg/ml) against the breast cancer (MCF-7) cell line, while the butanol (BuOH) and water fractions did not show any anticancer effects. Additionally, the EtOAc fraction at a dose of 14.4 mg/kg was able to elevate IL-2 levels and suppress the expression of PGE2 in the serum of mice. A remarkable decrease in the percentage of death and tumor incidence in mice was achieved following treatment with the EtOAc fraction at a dose of 14.4mg/kg. No abnormal parameters in blood were observed in the J. subtriplinerve treatment groups. These results suggest that J. subtriplinerve, when used as tea or a functional food, is nontoxic and has clear chemopreventive effects against breast cancer.
Collapse
Affiliation(s)
- Phan Hong Minh
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Pham Thi Van Anh
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Bui Thanh Tung
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Ho My Dung
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | | | - Pham Thi Hong Nhung
- University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Nguyen Thi Hang
- National Institute of Medical Materials (NIMM), Hanoi, 11022, Vietnam
| | | | - Nguyen Viet Phong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Ba Vinh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mai Phuong Thanh
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
2
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
3
|
Wang X, Yang X, Hao E, Xie J, Du Z, Deng J, Hou X, Wei W. An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats. Curr Drug Metab 2024; 25:340-354. [PMID: 39108113 PMCID: PMC11774310 DOI: 10.2174/0113892002299923240801092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis. METHODS Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed. RESULTS In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo. CONCLUSION The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.
Collapse
Affiliation(s)
- Xiangying Wang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xiao Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xiaotao Hou
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| |
Collapse
|
4
|
Seo Y, Lim C, Lee J, Kim J, Kim YH, Lee PCW, Jang SW. Sakurasosaponin inhibits lung cancer cell proliferation by inducing autophagy via AMPK activation. Oncol Lett 2023; 26:501. [PMID: 37920436 PMCID: PMC10618918 DOI: 10.3892/ol.2023.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Sakurasosaponin (S-saponin; PubChem ID: 3085160), a recently identified saponin from the roots of Primula sieboldii, has shown potential anticancer properties against various types of cancer. In the present study, the effects of S-saponin on non-small cell lung cancer (NSCLC) cell proliferation and the underlying mechanisms, were investigated. The effect of S-saponin on cell proliferation and cell death were assessed CCK-8, clonogenic assay, western blotting and Annexin V/PI double staining. S-saponin-induced autophagy was determined by confocal microscopic analysis and immunoblotting. S-saponin inhibited the proliferation of A549 and H1299 NSCLC cell lines in a dose- and time-dependent manner, without inducing apoptosis. S-saponin treatment induced autophagy in these cells, as evidenced by the increased LC3-II levels and GFP-LC3 puncta formation. It activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which is crucial for autophagy induction. Inhibition of AMPK with Compound C or siRNA-mediated knockdown of AMPK abrogated S-saponin-induced autophagy and partially rescued cell proliferation. Therefore, S-saponin exerts anti-proliferative effects on NSCLC cells through autophagy induction via AMPK activation. Understanding the molecular mechanisms underlying the anticancer effects of S-saponin in NSCLC cells could provide insights for the development of novel therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Yulyeong Seo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Chungun Lim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jinho Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Yoon Hyoung Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| |
Collapse
|
5
|
Allelopathic Potential of Mangroves from the Red River Estuary against the Rice Weed Echinochloa crus-galli and Variation in Their Leaf Metabolome. PLANTS 2022; 11:plants11192464. [PMID: 36235332 PMCID: PMC9573700 DOI: 10.3390/plants11192464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Mangroves are the only forests located at the sea–land interface in tropical and subtropical regions. They are key elements of tropical coastal ecosystems, providing numerous ecosystem services. Among them is the production of specialized metabolites by mangroves and their potential use in agriculture to limit weed growth in cultures. We explored the in vitro allelopathic potential of eight mangrove species’ aqueous leaf extracts (Avicennia marina, Kandelia obovata, Bruguiera gymnorhiza, Sonneratia apetala, Sonneratia caseolaris, Aegiceras corniculatum, Lumnitzera racemosa and Rhizophora stylosa) on the germination and growth of Echinochloa crus-galli, a weed species associated with rice, Oryza sativa. Leaf methanolic extracts of mangrove species were also studied via UHPLC-ESI/qToF to compare their metabolite fingerprints. Our results highlight that A. corniculatum and S. apetala negatively affected E. crus-galli development with a stimulating effect or no effect on O. sativa. Phytochemical investigations of A. corniculatum allowed us to putatively annotate three flavonoids and two saponins. For S. apetala, three flavonoids, a tannin and two unusual sulfated ellagic acid derivatives were found. Some of these compounds are described for the first time in these species. Overall, A. corniculatum and S. apetala leaves are proposed as promising natural alternatives against E. crus-galli and should be further assessed under field conditions.
Collapse
|
6
|
Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study. Eur J Dent 2022; 17:46-56. [PMID: 35453169 PMCID: PMC9949921 DOI: 10.1055/s-0041-1741374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Mangrove (Aegiceras corniculatum) is an abundant natural marine resource of Indonesia, which can be explored for treating periodontal disease due to its potential as immunoregulatory, antibacterial, and antioxidant properties. The objective of this study was to investigate the active compound from Indonesian mangrove leaf extract (A. corniculatum) (MLE) for developing a herbal-based mouthwash through in silico and in vitro studies. MATERIALS AND METHODS Phytochemistry and liquid chromatography-high resolution mass spectrometry (LC-HRMS) were done to explore the active compounds in MLE. Chemistry screening and interaction, absorption, distribution, metabolism, and excretion (ADME), molecular docking simulation, and visualization of MLE active compounds as anti-inflammatory, antioxidant, and antibacterial were investigated in silico The inhibition zone of MLE against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) as periodontopathogenic bacterias was performed by diffusion method. Doxycycline 100 mg was used as a positive control, as a treatment group, there were five groups, namely 0%, 25%, 50%, 75%, and 100% MLE. RESULTS Alkaloid, saponin, flavonoid, triterpenoid, steroid, tannin, and quinone were detected in MLE. A high concentration of (-)epicatechin and coumaric acid (CA) were found in MLE. MLE in 100% concentration has the most effective ability to inhibit Fn, Pg, Aa growth in vitro. (-)-Epicatechin has a higher negative binding affinity than CA that can enhance heat shock protein (HSP)-30, HSP-70, HSP-90, interleukin-10, and FOXP3 and also inhibit interleukin-6, peptidoglycan, flagellin, and dectin in silico. CONCLUSION MLE of A. corniculatum has antioxidant, anti-inflammatory, and antibacterial activities that can be a potential raw material for developing a herbal-based mouthwash.
Collapse
|
7
|
Mbaoji FN, Nweze JA, Yang L, Huang Y, Huang S, Onwuka AM, Peter IE, Mbaoji CC, Jiang M, Zhang Y, Pan L, Yang D. Novel Marine Secondary Metabolites Worthy of Development as Anticancer Agents: A Review. Molecules 2021; 26:molecules26195769. [PMID: 34641312 PMCID: PMC8510081 DOI: 10.3390/molecules26195769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Secondary metabolites from marine sources have a wide range of biological activity. Marine natural products are promising candidates for lead pharmacological compounds to treat diseases that plague humans, including cancer. Cancer is a life-threatening disorder that has been difficult to overcome. It is a long-term illness that affects both young and old people. In recent years, significant attempts have been made to identify new anticancer drugs, as the existing drugs have been useless due to resistance of the malignant cells. Natural products derived from marine sources have been tested for their anticancer activity using a variety of cancer cell lines derived from humans and other sources, some of which have already been approved for clinical use, while some others are still being tested. These compounds can assault cancer cells via a variety of mechanisms, but certain cancer cells are resistant to them. As a result, the goal of this review was to look into the anticancer potential of marine natural products or their derivatives that were isolated from January 2019 to March 2020, in cancer cell lines, with a focus on the class and type of isolated compounds, source and location of isolation, cancer cell line type, and potency (IC50 values) of the isolated compounds that could be a guide for drug development.
Collapse
Affiliation(s)
- Florence Nwakaego Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Soil and Water Research Infrastructure, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Yangbin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Akachukwu Marytheresa Onwuka
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Ikechukwu Emmanuel Peter
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Cynthia Chioma Mbaoji
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| |
Collapse
|
8
|
Tuan Anh HL, Le Ba V, Do TT, Phan VK, Pham Thi HY, Bach LG, Tran MH, Tran Thi PA, Kim YH. Bioactive compounds from Physalis angulata and their anti-inflammatory and cytotoxic activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:809-817. [PMID: 33030034 DOI: 10.1080/10286020.2020.1825390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
A new compound, physalucoside A (1), together with seven withanolides (2-8) and three flavonoids (9-11), were isolated from Physalis angulata L. (Solanaceae), a medicinal plant native to Vietnam. The chemical structures of these compounds were elucidated by one- and two-dimensional NMR spectra, high-resolution electrospray ionization mass spectrometry analyses, and chemical reactivity. The anti-inflammatory and cytotoxic activities of isolated compounds were also evaluated. These data suggest that the anti-inflammatory activity of P. angulata is due primarily to its withanolide content. This study demonstrates the potential of withanolides as promising candidates for the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 10307, Vietnam
| | - Vinh Le Ba
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 10307, Vietnam
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Thi Thao Do
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 10307, Vietnam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 10307, Vietnam
| | - Van Kiem Phan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 10307, Vietnam
| | - Hai Yen Pham Thi
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 10307, Vietnam
| | - Long Giang Bach
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 748000, Vietnam
| | - Manh Hung Tran
- Medicinal Chemistry Division, Faculty of Chemistry, University of Science, Vietnam National University Hochiminh city, 227 Nguyen Van Cu, Ho Chi Minh City 748000, Vietnam
| | - Phuong Anh Tran Thi
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 10307, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Natural Products Targeting the Mitochondria in Cancers. Molecules 2020; 26:molecules26010092. [PMID: 33379233 PMCID: PMC7795732 DOI: 10.3390/molecules26010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.
Collapse
|
10
|
Song IS, Jeong YJ, Kim J, Seo KH, Baek NI, Kim Y, Kim CS, Jang SW. Pharmacological inhibition of androgen receptor expression induces cell death in prostate cancer cells. Cell Mol Life Sci 2020; 77:4663-4673. [PMID: 31894360 PMCID: PMC11104930 DOI: 10.1007/s00018-019-03429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
The androgen receptor (AR) plays an important role in the pathogenesis and development of prostate cancer (PCa). Mostly, PCa progresses to androgen-independent PCa, which has activated AR signaling from androgen-dependent PCa. Thus, inhibition of AR signaling may be an important therapeutic target in androgen-dependent and castration-resistant PCa. In this study, we determined the anticancer effect of a newly found natural compound, sakurasosaponin (S-saponin), using androgen-dependent and castration-resistant PCa cell lines. S-saponin induces mitochondrial-mediated cell death in both androgen-dependent (LNCaP) and castration-resistant (22Rv1 and C4-2) PCa cells, via AR expression. S-saponin treatment induces a decrease in AR expression in a time- and dose-dependent manner and a potent decrease in the expression of its target genes, including prostate-specific antigen (PSA), transmembrane protease, serin 2 (TMPRSS2), and NK3 homeobox 1 (NKX3.1). Furthermore, S-saponin treatment decreases B-cell lymphoma-extra large (Bcl-xL) and mitochondrial membrane potential, thereby increasing the release of cytochrome c into the cytosol. Moreover, Bcl-xL inhibition and subsequent mitochondria-mediated cell death caused by S-saponin were reversed by Bcl-xL or AR overexpression. Interestingly, S-saponin-mediated cell death was significantly reduced by a reactive oxygen species (ROS) scavenger, N-acetylcystein. Animal xenograft experiments showed that S-saponin treatment significantly reduced tumor growth of AR-positive 22Rv1 xenografts but not AR-negative PC-3 xenografts. Taken together, for the first time, our results revealed that S-saponin induces mitochondrial-mediated cell death in androgen-dependent and castration-resistant cells through regulation of AR mechanisms, including downregulation of Bcl-xL expression and induction of ROS stress by decreasing mitochondrial membrane potential.
Collapse
Affiliation(s)
- In-Sung Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Yu Jeong Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Jueun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kyoung-Hwa Seo
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
- Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea.
| |
Collapse
|
11
|
Vinh LB, Heo M, Phong NV, Ali I, Koh YS, Kim YH, Yang SY. Bioactive Compounds from Polygala tenuifolia and Their Inhibitory Effects on Lipopolysaccharide-Stimulated Pro-inflammatory Cytokine Production in Bone Marrow-Derived Dendritic Cells. PLANTS 2020; 9:plants9091240. [PMID: 32962290 PMCID: PMC7570142 DOI: 10.3390/plants9091240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/23/2023]
Abstract
The roots of Polygala tenuifolia Wild (Polygalaceae), which is among the most important components of traditional Chinese herbal medicine, have been widely used for over 1000 years to treat a variety of diseases. In the current investigation of secondary metabolites with anti-inflammatory properties from Korean medicinal plants, a phytochemical constituent study led to the isolation of 15 compounds (1–15) from the roots of P. tenuifolia via a combination of chromatographic methods. Their structures were determined by means of spectroscopic data such as nuclear magnetic resonance (NMR), 1D- and 2D-NMR, and liquid chromatography-mass spectrometry (LC-MS). As the obtained results, the isolated compounds were divided into two groups—phenolic glycosides (1–9) and triterpenoid saponins (10–15). The anti-inflammatory effects of crude extracts, fractions, and isolated compounds were investigated on the production of the pro-inflammatory cytokines interleukin (IL)-12 p40, IL-6, and tumour necrosis factor-α in lipopolysaccharide-stimulated bone marrow-derived dendritic cells. The IC50 values, ranging from 0.08 ± 0.01 to 21.05 ± 0.40 μM, indicated potent inhibitory effects of the isolated compounds on the production of all three pro-inflammatory cytokines. In particular, compounds 3–12, 14, and 15 showed promising anti-inflammatory activity. These results suggest that phenolic and triterpenoid saponins from P. tenuifolia may be excellent anti-inflammatory agents.
Collapse
Affiliation(s)
- Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (M.H.)
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam;
| | - Myungsook Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (M.H.)
| | - Nguyen Viet Phong
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam;
| | - Irshad Ali
- School of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea; (I.A.); (Y.S.K.)
| | - Young Sang Koh
- School of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea; (I.A.); (Y.S.K.)
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (M.H.)
- Correspondence: (Y.H.K.); (S.Y.Y.); Tel.: +82-42-821-5933 (Y.H.K.); +82-42-821-7321 (S.Y.Y.)
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (M.H.)
- Correspondence: (Y.H.K.); (S.Y.Y.); Tel.: +82-42-821-5933 (Y.H.K.); +82-42-821-7321 (S.Y.Y.)
| |
Collapse
|
12
|
Vinh LB, Nguyet NTM, Ye L, Dan G, Phong NV, Anh HLT, Kim YH, Kang JS, Yang SY, Hwang I. Enhancement of an In Vivo Anti-Inflammatory Activity of Oleanolic Acid through Glycosylation Occurring Naturally in Stauntonia hexaphylla. Molecules 2020; 25:molecules25163699. [PMID: 32823787 PMCID: PMC7464308 DOI: 10.3390/molecules25163699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/03/2023] Open
Abstract
Stauntonia hexaphylla (Lardizabalaceae) has been used as a traditional herbal medicine in Korea and China for its anti-inflammatory and analgesic properties. As part of a bioprospecting program aimed at the discovery of new bioactive compounds from Korean medicinal plants, a phytochemical study of S. hexaphylla leaves was carried out leading to isolation of two oleanane-type triterpene saponins, 3-O-[β-d-glucopyranosyl (1→2)-α-l-arabinopyranosyl] oleanolic acid-28-O-[β-d-glucopyranosyl (1→6)-β-d-glucopyranosyl] ester (1) and 3-O-α-l-arabinopyranosyl oleanolic acid-28-O-[β-d-glucopyranosyl (1→6)-β-d-glucopyranosyl] ester (2). Their structures were established unambiguously by spectroscopic methods such as one- and two-dimensional nuclear magnetic resonance and infrared spectroscopies, high-resolution electrospray ionization mass spectrometry and chemical reactions. Their anti-inflammatory activities were examined for the first time with an animal model for the macrophage-mediated inflammatory response as well as a cell-based assay using an established macrophage cell line (RAW 264.7) in vitro. Together, it was concluded that the saponin constituents, when they were orally administered, exerted much more potent activities in vivo than their sapogenin core even though both the saponins and the sapogenin molecule inhibited the RAW 264.7 cell activation comparably well in vitro. These results imply that saponins from S. hexaphylla leaves have a definite advantage in the development of oral medications for the control of inflammatory responses.
Collapse
Affiliation(s)
- Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam;
| | - Nguyen Thi Minh Nguyet
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
| | - Liu Ye
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
| | - Gao Dan
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
| | - Nguyen Viet Phong
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam;
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Thua Thien Hue 531600, Vietnam;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
- Correspondence: (S.Y.Y.); (I.H.); Tel.: +82-42-821-7321 (S.Y.Y.); +82-42-821-5922 (I.H.)
| | - Inkyu Hwang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (L.B.V.); (N.T.M.N.); (L.Y.); (G.D.); (Y.H.K.); (J.S.K.)
- Correspondence: (S.Y.Y.); (I.H.); Tel.: +82-42-821-7321 (S.Y.Y.); +82-42-821-5922 (I.H.)
| |
Collapse
|
13
|
Mazumder K, Biswas B, Raja IM, Fukase K. A Review of Cytotoxic Plants of the Indian Subcontinent and a Broad-Spectrum Analysis of Their Bioactive Compounds. Molecules 2020; 25:E1904. [PMID: 32326113 PMCID: PMC7221707 DOI: 10.3390/molecules25081904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer or uncontrolled cell proliferation is a major health issue worldwide and is the second leading cause of deaths globally. The high mortality rate and toxicity associated with cancer chemotherapy or radiation therapy have encouraged the investigation of complementary and alternative treatment methods, such as plant-based drugs. Moreover, over 60% of the anti-cancer drugs are molecules derived from plants or their synthetic derivatives. Therefore, in the present review, an attempt has been made to summarize the cytotoxic plants available in the Indian subcontinent along with a description of their bio-active components. The review covers 99 plants of 57 families as well as over 110 isolated bioactive cytotoxic compounds, amongst which at least 20 are new compounds. Among the reported phytoconstituents, artemisinin, lupeol, curcumin, and quercetin are under clinical trials, while brazilin, catechin, ursolic acid, β-sitosterol, and myricetin are under pharmacokinetic development. However, for the remaining compounds, there is little or no information available. Therefore, further investigations are warranted on these subcontinent medicinal plants as an important source of novel cytotoxic agents.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
- School of Biomedical Sciences, Charles Sturt University, Boorooma St, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Iqbal Mahmud Raja
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (B.B.); (I.M.R.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Vinh LB, Nguyet NTM, Thanh CD, Huong TT, Tram LH, Van Thong N, Minh NH, Thao NP, Hwang I, Yang SY, Kim YH. Chemical constituents of Vietnamese mangrove Hibiscus tiliaceus with antioxidant and alpha-glucosidase inhibitory activity. Nat Prod Res 2019; 35:2899-2904. [DOI: 10.1080/14786419.2019.1672065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | | | - Chu Duc Thanh
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tran Thu Huong
- School of Chemical Engineering (SCE), Hanoi University of Science & Technology (HUST), Hanoi, Vietnam
| | - Le Huyen Tram
- School of Chemical Engineering (SCE), Hanoi University of Science & Technology (HUST), Hanoi, Vietnam
| | - Nguyen Van Thong
- School of Chemical Engineering (SCE), Hanoi University of Science & Technology (HUST), Hanoi, Vietnam
| | - Nguyen Hoang Minh
- School of Chemical Engineering (SCE), Hanoi University of Science & Technology (HUST), Hanoi, Vietnam
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Inkyu Hwang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|