1
|
Wei SS, Lai JY, Chen C, Zhang YJ, Nong XM, Qiu KD, Duan FF, Zou ZX, Tan HB. Sesquiterpenes and α-pyrones from an endophytic fungus Xylaria curta YSJ-5. PHYTOCHEMISTRY 2024; 220:114011. [PMID: 38367793 DOI: 10.1016/j.phytochem.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 μg/mL.
Collapse
Affiliation(s)
- Shan-Shan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Ying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China
| | - Yan-Jiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Miao Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kai-Di Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Fang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| | - Hai-Bo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China.
| |
Collapse
|
2
|
Wei S, Chen C, Lai J, Zhang Y, Nong X, Duan F, Wu P, Wang S, Tan H. Xylarcurcosides A-C, three novel isopimarane-type diterpene glycosides from Xylaria curta YSJ-5. Carbohydr Res 2024; 535:108987. [PMID: 38048745 DOI: 10.1016/j.carres.2023.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Three previously undescribed isopimarane-type diterpene glycosides named as xylarcurcosides A-C (1-3) along with two known ones 16-α-d-mannopyranosyloxyisopimar-7-en-19-oic acid (4) and hypoxylonoid A (5) were successfully isolated from an ethyl acetate extract of the endophytic fungus Xylaria curta YSJ-5 growing in leaves of Alpinia zerumbet. The spectroscopic methods, electronic circular dichroism (ECD) calculations, and X-ray diffraction experiments were conducted to identify their absolute chemical structures. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, these novel compounds demonstrated no obvious cytotoxic and antibacterial activity.
Collapse
Affiliation(s)
- Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinmiao Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Fangfang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ping Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China.
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Becker K, Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot (Tokyo) 2021; 74:1-23. [PMID: 33097836 PMCID: PMC7732752 DOI: 10.1038/s41429-020-00376-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the first time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
Collapse
Affiliation(s)
- Kevin Becker
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
4
|
Wang WX, Li ZH, He J, Feng T, Li J, Liu JK. Cytotoxic cytochalasans from fungus Xylaria longipes. Fitoterapia 2019; 137:104278. [PMID: 31351910 DOI: 10.1016/j.fitote.2019.104278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022]
Abstract
Five new cytochalasans (1-5) were isolated from the rice fermentation of fungus Xylaria longipes, along with seven known compounds cytochalasin P (6), cytochalasin D (7), zygosporin D (8), 7-O-acetylcytochalasin D (9), cytochalasin C (10), 6,7-dihydro-7-oxo-cytochalasin C (11), and 6,7-dihydro-7-oxo-deacetylcytochalasin C (12). Their structures and absolute configurations were determined by extensive experimental spectroscopic methods as well as ECD calculation and GIAO 13C NMR calculation. The cytotoxicity of obtained compounds (1-12) was evaluated against human cancer cell lines HL-60, A549, SMMC-7721, MCF-7, and SW480. Compounds 6-8, 11, and 12 showed cytotoxicity with IC50 value ranging from 4.17-37.18 μM.
Collapse
Affiliation(s)
- Wen-Xuan Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China.
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China
| | - Jing Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), PR China.
| |
Collapse
|
5
|
Pan Y, Zheng W, Yang S. Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod Res 2019; 34:3130-3133. [DOI: 10.1080/14786419.2019.1607335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yun Pan
- Coll Pharm aceut Sci, Zhejiang Univ Technol, Hangzhou, Zhejiang, People R China
| | - Weihong Zheng
- School of Life Science, Huzhou University, Huzhou, Zhejiang, People R China
| | - Shengli Yang
- Coll Pharm aceut Sci, Zhejiang Univ Technol, Hangzhou, Zhejiang, People R China
| |
Collapse
|