1
|
Said G, Ali A, Umair M, Ahmad F, Gul S, Ateeq M. Bioactivities of natural product geodin congeners and their preliminary structure activity relationship. Nat Prod Res 2024; 38:3972-3981. [PMID: 37865972 DOI: 10.1080/14786419.2023.2272022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/30/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
A series of 6 novel ester derivatives 2-7 of natural product geodin 1 were designed and semi-synthesized through one mild step reaction with high yield. Compounds 2-7 showed strong inhibitory activities against Staphylococcus aureus in the range of 2.35-9.41 μM. Compounds 4 and 7 showed very strong inhibitory activities against antifouling bacteria Aeromonas salmonicida with MICs of 2.42 μM and 4.56 μM respectively. Most notably compounds 3-7 showed potent antifungal activities against Candida albicans in the range of 0.59-2.44 μM. Particularly, compound 3 showed the highest antifungal activity against C. albicans with a MIC value of 0.59 μM. The preliminary structure activity relationship of these derivatives showed that replacement of 4-OH group with benzoyl substituents could enhance the antibacterial and antifungal activities of geodin 1.
Collapse
Affiliation(s)
- Gulab Said
- Department of Chemistry, Women University Swabi, Swabi, Pakistan
| | - Amjad Ali
- Center of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Farooq Ahmad
- Department of Biochemistry, Women University Swabi, Swabi, Pakistan
| | - Salma Gul
- Department of Chemistry, Women University Swabi, Swabi, Pakistan
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
2
|
Fan H, Shao XH, Wu PP, Hao AL, Luo ZW, Zhang MD, Xie J, Peng B, Zhang CX. Exploring Brominated Aromatic Butenolides from Aspergillus terreus EGF7-0-1 with Their Antifungal Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19869-19882. [PMID: 39219104 DOI: 10.1021/acs.jafc.4c04728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fungal diseases could severely harm agricultural productions. To develop new antifungal agents, based on the Global Natural Products Social Molecular Networking, typical bromine isotope peak ratios, and ultraviolet absorptions, cultivation of the soft coral-derived endophytic fungi Aspergillus terreus EGF7-0-1 with NaBr led to the targeted isolation of 14 new brominated aromatic butenolides (1-14) and six known analogues (15-20). Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculations. Compounds 1-14 exhibited wildly antifungal activities (against Colletotrichum gloeosporioides, Pestalotiopsis microspora, Fusarium oxysporum f. sp. cubense, Botrytis cinerea, and Diaporthe phoenicicola). The bioassay results showed that compounds 1-14 exhibited excellent antifungal activities against C. gloeosporioides, with concentration for 50% of maximal effect (EC50) values from 2.72 to 130.41 nM. The mechanistic study suggests that compound 1 may disrupt nutrient signaling pathways by reducing the levels of metabolites, such as carbohydrates, lipids, and amino acids, leading to an increase in low-density granules and a decrease in high-density granules in the cytoplasm, accompanied by numerous vacuoles, thereby inhibiting the growth of C. gloeosporioides. Monobrominated γ-butenolide 1 may be expected to exploit a novel agriculturally antifungal leading drug. Meanwhile, compound M1 has conformed antifugual activities against C. gloeosporioides by papayas in vivo.
Collapse
Affiliation(s)
- Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xue-Hua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ping-Ping Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ao-Lin Hao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zheng-Wu Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Meng-Dan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jing Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, People's Republic of China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
4
|
Huang X, Wang Y, Li G, Shao Z, Xia J, Qin JJ, Wang W. Secondary metabolites from the deep-sea derived fungus Aspergillus terreus MCCC M28183. Front Microbiol 2024; 15:1361550. [PMID: 38419626 PMCID: PMC10899347 DOI: 10.3389/fmicb.2024.1361550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Aspergillus fungi are renowned for producing a diverse range of natural products with promising biological activities. These include lovastatin, itaconic acid, terrin, and geodin, known for their cholesterol-regulating, anti-inflammatory, antitumor, and antibiotic properties. In our current study, we isolated three dimeric nitrophenyl trans-epoxyamides (1-3), along with fifteen known compounds (4-18), from the culture of Aspergillus terreus MCCC M28183, a deep-sea-derived fungus. The structures of compounds 1-3 were elucidated using a combination of NMR, MS, NMR calculation, and ECD calculation. Compound 1 exhibited moderate inhibitory activity against human gastric cancer cells MKN28, while compound 7 showed similar activity against MGC803 cells, with both showing IC50 values below 10 μM. Furthermore, compound 16 exhibited moderate potency against Vibrio parahaemolyticus ATCC 17802, with a minimum inhibitory concentration (MIC) value of 7.8 μg/mL. This promising research suggests potential avenues for developing new pharmaceuticals, particularly in targeting specific cancer cell lines and combating bacterial infections, leveraging the unique properties of these Aspergillus-derived compounds.
Collapse
Affiliation(s)
- Xiaomei Huang
- Department of Marine Biology, Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
5
|
Amr K, Ibrahim N, Elissawy AM, Singab ANB. Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biol Biotechnol 2023; 10:6. [PMID: 36966331 PMCID: PMC10040139 DOI: 10.1186/s40694-023-00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/27/2023] Open
Abstract
Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Isolation, crystal structure, absolute configuration and molecular docking of butyrolactone I as a potential inhibitor of topoisomerase II. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Deep learning strategies for active secondary metabolites biosynthesis from fungi: Harnessing artificial manipulation and application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Hamed A, Abdel-Razek AS, Omran DA, El-Metwally MM, El-Hosari DG, Frese M, Soliman HSM, Sewald N, Shaaban M. Terretonin O: a new meroterpenoid from Aspergillus terreus. Nat Prod Res 2019; 34:965-974. [PMID: 30602325 DOI: 10.1080/14786419.2018.1544977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Terretonin O (1), a new meroterpenoid, was isolated individually from both methanolic extracts of thermophilic Aspergillus terreus TM8 and marine Aspergillus terreus LGO13. The recently reported terretonins M (2) and N (3) were further isolated from the fungus LGO13 along with nine known compounds, terrelumamide A (4), terrein (5), methyl-3,4,5-trimethoxyl-2-[2-(nicotinamide)benzamido] benzoate (6), butyrolactones I-III (7-9), aspulvinone O (10), ergosterol, ergost-4-ene-3-one and methyl linoleate. Structure of terretonin O (1) was established on the bases of HRESIMS, 1D and 2D NMR spectra and comparison with its analogues in literatures. The relative stereochemistry of 1 was assigned on the basis of NOESY spectra and comparison with reported configuration of its congener compounds 2 and 3. The antimicrobial and cytotoxic activities of the fungal extracts and obtained compounds were assayed using a set of microorganisms, and cervix carcinoma cell line (KB-3-1), respectively. Isolation and taxonomical characterization of the producing strains are reported.
Collapse
Affiliation(s)
- Abdelaaty Hamed
- aOrganic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.,bChemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed S Abdel-Razek
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.,cMicrobial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Doha A Omran
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.,dPharmacognosy Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Mohammad M El-Metwally
- eBotany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Doaa G El-Hosari
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Hesham S M Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.,fChemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|