1
|
Garello M, Piombo E, Buonsenso F, Prencipe S, Valente S, Meloni GR, Marcet-Houben M, Gabaldón T, Spadaro D. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts. Food Microbiol 2024; 122:104532. [PMID: 38839238 DOI: 10.1016/j.fm.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.
Collapse
Affiliation(s)
- Marco Garello
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, 75651, Uppsala, Sweden
| | - Fabio Buonsenso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Silvia Valente
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
2
|
Pang C, Chen YH, Bian HH, Zhang JP, Su L, Han H, Zhang W. Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44. Molecules 2023; 28:7784. [PMID: 38067514 PMCID: PMC10708211 DOI: 10.3390/molecules28237784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (2-16). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Cheng Pang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Yu-Hong Chen
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hui-Hui Bian
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Jie-Ping Zhang
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hua Han
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Wen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| |
Collapse
|
3
|
Abstract
From the supernatant of the fermentation broth of Penicillium oxalicum, we isolated a previously undescribed peniciphenalenin G (1) and three known compounds 2-4. Their chemical structures were established through spectroscopic analysis as well as comparing with data in the literature. Compound 1 displayed a moderate cytotoxicity with IC50 value 21.4 μM (positive drug regorafenib with IC50 value of 8.2 μM) against Caco2 cells while compounds 2 and 3 showed weak cytotoxicities with IC50 value of 52.1 and 39.2 μM, respectively.
Collapse
Affiliation(s)
- Xiaoying Qi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Liu
- Harbin University of Commerce, Harbin, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang Y, Xia GY, Wu YZ, Wei XH, Xia H, Wang LY, Lin PC, Wang YN, Chen LX, Lin S. Two New Nor-seco-Isodhilarane-Type Meroterpenoids from the Endophytic Fungus Penicillium purpurogenum. Chem Biodivers 2022; 19:e202200403. [PMID: 35596060 DOI: 10.1002/cbdv.202200403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 12/26/2022]
Abstract
Two new nor-seco isodhilarane meroterpenoids (NSIMs), purpurogenolides F (1) and G (2), along with three known meroterpenoid analogs (3-5), were isolated from the cultures of an endophytic fungus, Penicillium purpurogenum. Structures and absolute configurations of the new NSIMs were determined based on extensive spectroscopic data analyses, including HR-ESI-MS, UV, IR, NMR chemical shift calculations together with DP4+ probability analysis, as well as ECD calculations. All the isolated meroterpenoids were assessed for their anti-inflammatory activities, and compound 4 exhibited moderate inhibitory activity against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells with an IC50 value of 20.85±2.31 μM.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Wuya college of innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yu-Zhuo Wu
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Peng-Cheng Lin
- Key Laboratory for Qinghai-Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmaceutical, Qinghai Nationalities University, Xining, 810007, China
| | - Ya-Nan Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Xia Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Wuya college of innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Sheng Lin
- Key Laboratory of Chinese internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
5
|
Wu YZ, Xia GY, Xia H, Wang LY, Wang YN, Li L, Shang HC, Lin S. Seco and Nor- seco Isodhilarane-Type Meroterpenoids from Penicillium purpurogenum and the Configuration Revisions of Related Compounds. JOURNAL OF NATURAL PRODUCTS 2022; 85:248-255. [PMID: 34978193 DOI: 10.1021/acs.jnatprod.1c01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seco and nor-seco isodhilarane-type meroterpenoids (SIMs and NSIMs) are mainly found in Penicillium fungi and have been characterized by highly congested polycyclic skeletons and a broad range of bioactivities. However, the literature reports inconsistent configuration assignments for some SIMs and NSIMs, due to their complex polycyclic systems and multichiral centers. Herein, we described eight SIMs and NSIMs isolated from the EtOAc extract of Penicillium purpurogenum, which led to the configuration revisions of purpurogenolide C (1a), berkeleyacetal B (2a), chrysogenolide F (3a), and berkeleyacetal C (4a) as compounds 1-4, respectively. Furthermore, extensive re-evaluation of the experimental and computational 13C NMR chemical shifts of the reported 39 SIMs and NSIMs provided an empirical approach for determining the C-9 relative configuration, according to the 13C NMR chemical shifts of C-9, which contributed to the configuration revisions of another three SIMs (5a and 6a) and NSIMs (7a), denoted as compounds 5-7, respectively. Biological assays indicated that compound 3 exhibited cytotoxic activity against HepG2 and A549 cell lines with IC50 values of 5.58 and 6.80 μM, respectively. Compounds 2-4, 8, 9, and 32 showed moderate hepatoprotective activity at 10 μM in the APAP-induced HepG2 cell injury model.
Collapse
Affiliation(s)
- Yu-Zhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
6
|
Ma M, Yi W, Qin L, Lian XY, Zhang Z. Talaromydien a and talaroisocoumarin A, new metabolites from the marine-sourced fungus Talaromyces sp. ZZ1616. Nat Prod Res 2021; 36:460-465. [PMID: 34967248 DOI: 10.1080/14786419.2020.1779265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New talaromydien A (1) and talaroisocoumarin A (2), together with nine known compounds (3 - 11), were isolated from a culture of the marine-derived Talaromyces sp. ZZ1616 in potato dextrose broth medium. Structures of the new compounds were elucidated based on their HRESIMS data, NMR spectroscopic analyses, the modified Mosher's method, ECD, 13C NMR and optical rotation calculations. Talaroisocoumarin A showed antimicrobial activities with MIC values of 36.0 μg/mL against methicillin-resistant Staphylococcus aureus, 32.0 μg/mL against Escherichia coli, and 26.0 μg/mL against Candida albicans.
Collapse
Affiliation(s)
- Mingzhu Ma
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Wenwen Yi
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Le Qin
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| |
Collapse
|
7
|
Abrol V, Kushwaha M, Arora D, Mallubhotla S, Jaglan S. Mutation, Chemoprofiling, Dereplication, and Isolation of Natural Products from Penicillium oxalicum. ACS OMEGA 2021; 6:16266-16272. [PMID: 34235296 PMCID: PMC8246446 DOI: 10.1021/acsomega.1c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Diethyl sulfate (DES)-based chemical mutagenesis was applied on different fungal strains with the aim of diversifying the secondary metabolites. The mutant strain (VRE-MT1) of Penicillium oxalicum was subjected to dereplication (LCMS-based) and isolation of natural products, resulting in obtaining 10 molecules of bioactive potential. Metabolites, viz. tuckolide, methylpenicinoline, 2-acetyl-3,5-dihydroxy-4,6-dimethylbenzeneacetic acid, penicillixanthone A, brefeldin A 7-ketone, and antibiotic FD 549, were observed for the first time from P. oxalicum. The results of antimicrobial activity reveal that the compounds N-[2-(4-hydroxyphenyl)ethenyl]formamide, methylpenicinoline, and penipanoid A have potent antibacterial activity against Bacillus subtilis (ATCC 6633) with minimum inhibitory concentration (MIC) values of 16, 64, and 16 μM, respectively, and the compounds N-[2-(4-hydroxyphenyl)ethenyl]formamide, methylpenicinoline, and penipanoid A were found active against Escherichia coli (ATCC 25922), with MIC values of 16, 64, and 16 μM, respectively. Also, the metabolites N-[2-(4-hydroxyphenyl)ethenyl]formamide and tuckolide showed effective antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid scavenging assays. The mutant VRE-MT1 was found to have 8.34 times higher quantity of N-[2-(4-hydroxyphenyl)ethenyl]formamide as compared to the mother strain. The DES-based mutagenesis strategy has been found to be a potent tool to diversify the secondary metabolites in fungi.
Collapse
Affiliation(s)
- Vidushi Abrol
- Fermentation
& Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- School
of Biotechnology, Shri Mata Vaishno Devi
University, Katra 182320, India
| | - Manoj Kushwaha
- Fermentation
& Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Divya Arora
- Fermentation
& Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sharada Mallubhotla
- School
of Biotechnology, Shri Mata Vaishno Devi
University, Katra 182320, India
| | - Sundeep Jaglan
- Fermentation
& Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Xu ZL, Cao SM, Qin YY, Mo TX, Li BC, Qin XY, Huang XS, Li J, Yang RY. Chemical Constituents of the Endophytic Fungus Penicillium macrosclerotiorum from Sophora tonkinensis. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Mei RQ, Wang B, Zeng WN, Huang GL, Chen GY, Zheng CJ. Bioactive isocoumarins isolated from a mangrove-derived fungus Penicillium sp. MGP11. Nat Prod Res 2021; 36:1260-1265. [PMID: 33459051 DOI: 10.1080/14786419.2021.1873981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new isocoumarins penicimarins L-M (1-2), along with seven known analogues (3-9) were isolated from the mangrove-derived fungus Penicillium sp. MGP11. Compounds 1-2 were established by spectroscopic methods and comparison of their circular dichroism (CD) spectra with the literature. All isolated compounds were evaluated for antioxidant and α-glucosidase inhibitory activities. Compound 8 had better antioxidant activity (IC50 = 4.6 μM) than positive control trolox (IC50 = 12.9 μM). Compounds 5, 8 and 9 exhibited α-glucosidase inhibitory activity with the IC50 values of 776.5, 683.7 and 868.7 μM, respectively.
Collapse
Affiliation(s)
- Rong-Qing Mei
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Bin Wang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Wei-Nv Zeng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Guo-Lei Huang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
10
|
|
11
|
Phenylhydrazone and Quinazoline Derivatives from the Cold-Seep-Derived Fungus Penicillium oxalicum. Mar Drugs 2020; 19:md19010009. [PMID: 33379196 PMCID: PMC7824341 DOI: 10.3390/md19010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022] Open
Abstract
Three new phenylhydrazones, penoxahydrazones A-C (compounds 1-3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.
Collapse
|
12
|
Huang L, Ding L, Li X, Wang N, Cui W, Wang X, Naman CB, Lazaro JEH, Yan X, He S. New Dihydroisocoumarin Root Growth Inhibitors From the Sponge-Derived Fungus Aspergillus sp. NBUF87. Front Microbiol 2019; 10:2846. [PMID: 31921029 PMCID: PMC6914834 DOI: 10.3389/fmicb.2019.02846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Six new dihydroisocoumarins, aspergimarins A-F (1-6), were discovered together with five known analogs (7-11) from a monoculture of the sponge-derived fungus Aspergillus sp. NBUF87. The structures of these compounds were elucidated through comprehensive spectroscopic methods, and absolute configurations were assigned after X-ray crystallography, use of the modified Mosher's method, and comparison of electronic circular dichroism (ECD) data with literature values for previously reported analogs. Compounds 1-11 were evaluated in a variety of bioassays, and at 100 μM, both 1 and 5 showed significant inhibitory effects on the lateral root growth of Arabidopsis thaliana Columbia-0 (Col-0). Moreover, at 100 μM, 5 also possessed notable inhibition against the primary root growth of Col-0. Meanwhile, 1-11 were all found to be inactive in vitro against acetylcholinesterase (AChE) (IC50 > 100 μM), four different types of human-derived cancer cell lines (IC50 > 50 μM), as well as methicillin-resistant Staphylococcus aureus and Escherichia coli (MIC > 50 μg/mL), and Plasmodium falciparum W2 (EC50 > 100 μg/mL), in phenotypic tests.
Collapse
Affiliation(s)
- Liming Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiao Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - C. Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - J. Enrico H. Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon, Philippines
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Xu GB, Yang FY, Wu XY, Li R, Zhou M, Wang B, Yang XS, Zhang TT, Liao SG. Two new dihydroisocoumarins with antimicrobial activities from the fungus Penicillium sp. XR046 collected from Xinren coal area. Nat Prod Res 2019; 35:1445-1451. [PMID: 31460795 DOI: 10.1080/14786419.2019.1655019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new dihydroisocoumarins (1 and 2), together with six known compounds (3-8), were isolated from the fungus Penicillium sp. XR046 collected from the Xinren coal area of Guizhou province in China. Their structures were elucidated on the basis of spectroscopic analysis. The absolute configurations of C-3 in 1 and 2 were established by comparison of their CD data with those of known compounds. Compounds 1-6 showed anti-microbial activities with MIC values in the range of 50∼100 μg/mL against Candida albicans, Staphylococcus epidermidis, Bacillus subtilis, and Escherichia coli.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Fei-Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xin-Yu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Bing Wang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou, China
| | - Ting-Ting Zhang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| |
Collapse
|