1
|
Di Chio C, Previti S, Starvaggi J, De Luca F, Calabrò ML, Zappalà M, Ettari R. Drug Combination Studies of Isoquinolinone AM12 with Curcumin or Quercetin: A New Combination Strategy to Synergistically Inhibit 20S Proteasome. Int J Mol Sci 2024; 25:10708. [PMID: 39409037 PMCID: PMC11477218 DOI: 10.3390/ijms251910708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
In the eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a crucial role in the intracellular protein turnover. It is involved in several cellular functions such as the control of the regular cell cycle progression, the immune surveillance, and the homeostasis. Within the 20S proteasome barrel-like structure, the catalytic subunits, β1, β2 and β5, are responsible for different proteolytic activities: caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L), respectively. The β5 subunit is particularly targeted for its role in antitumor activity: the synthesis of β5 subunit inhibitors could be a promising strategy for the treatment of solid and hematologic tumors. In the present work, we performed two combination studies of AM12, a recently developed synthetic proteasome inhibitor, with curcumin and quercetin, two nutraceuticals endowed of many pharmacological properties. We measured the combination index (CI), applying the Chou and Talalay method, comparing the two studies, from 50% to 90% of proteasome inhibition. In the case of the combination AM12 + curcumin, an increasing synergism was observed from 50% to 90% of proteasome inhibition, while in the case of the combination AM12 + quercetin an additive effect was observed only from 50% to 70% of β5 subunit inhibition. These results suggest that combining AM12 with curcumin is a more promising strategy than combining it with quercetin for potential therapeutic applications, especially in treating tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (C.D.C.); (S.P.); (J.S.); (F.D.L.); (M.L.C.); (R.E.)
| | | |
Collapse
|
2
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
3
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
4
|
Di Chio C, Previti S, Totaro N, De Luca F, Allegra A, Schirmeister T, Zappalà M, Ettari R. Dipeptide Nitrile CD34 with Curcumin: A New Improved Combination Strategy to Synergistically Inhibit Rhodesain of Trypanosoma brucei rhodesiense. Int J Mol Sci 2023; 24:ijms24108477. [PMID: 37239824 DOI: 10.3390/ijms24108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Rhodesain is the main cysteine protease of Trypanosoma brucei rhodesiense, the parasite causing the acute lethal form of Human African Trypanosomiasis. Starting from the dipeptide nitrile CD24, the further introduction of a fluorine atom in the meta position of the phenyl ring spanning in the P3 site and the switch of the P2 leucine with a phenylalanine led to CD34, a synthetic inhibitor that shows a nanomolar binding affinity towards rhodesain (Ki = 27 nM) and an improved target selectivity with respect to the parent dipeptide nitrile CD24. In the present work, following the Chou and Talalay method, we carried out a combination study of CD34 with curcumin, a nutraceutical obtained from Curcuma longa L. Starting from an affected fraction (fa) of rhodesain inhibition of 0.5 (i.e., the IC50), we observed an initial moderate synergistic action, which became a synergism for fa values ranging from 0.6 to 0.7 (i.e., 60-70% inhibition of the trypanosomal protease). Interestingly, at 80-90% inhibition of rhodesain proteolytic activity, we observed a strong synergism, resulting in 100% enzyme inhibition. Overall, in addition to the improved target selectivity of CD34 with respect to CD24, the combination of CD34 + curcumin resulted in an increased synergistic action with respect to CD24 + curcumin, thus suggesting that it is desirable to use CD34 and curcumin in combination.
Collapse
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Noemi Totaro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Francisco KR, Monti L, Yang W, Park H, Liu LJ, Watkins K, Amarasinghe DK, Nalli M, Roberto Polaquini C, Regasini LO, Eduardo Miller Crotti A, Silvestri R, Guidi Magalhães L, Caffrey CR. Structure-activity relationship of dibenzylideneacetone analogs against the neglected disease pathogen, Trypanosoma brucei. Bioorg Med Chem Lett 2023; 81:129123. [PMID: 36608774 PMCID: PMC10072319 DOI: 10.1016/j.bmcl.2023.129123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes Human African Trypanosomiasis (HAT), a neglected tropical disease (NTD) that is endemic in 36 countries in sub-Saharan Africa. Only a handful drugs are available for treatment, and these have limitations, including toxicity and drug resistance. Using the natural product, curcumin, as a starting point, several curcuminoids and related analogs were evaluated against bloodstream forms of T. b. brucei. A particular subset of dibenzylideneacetone (DBA) compounds exhibited potent in vitro antitrypanosomal activity with sub-micromolar EC50 values. A structure-activity relationship study including 26 DBA analogs was initiated, and several compounds exhibited EC50 values as low as 200 nM. Cytotoxicity counter screens in HEK293 cells identified several compounds having selectivity indices above 10. These data suggest that DBAs offer starting points for a new small molecule therapy of HAT.
Collapse
Affiliation(s)
- Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hayoung Park
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitlyn Watkins
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Luis O Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Antônio Eduardo Miller Crotti
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP 14404-600, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23:ijms232314710. [PMID: 36499036 PMCID: PMC9738113 DOI: 10.3390/ijms232314710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Primary and secondary immunodeficiencies cause an alteration in the immune response which can increase the rate of infectious diseases and worsened prognoses. They can also alter the immune response, thus, making the infection even worse. Curcumin is the most biologically active component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the body's defence capacity. Curcumin also inhibits inflammatory responses by suppressing different metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding genetic material. This review analyses the relationships between immunodeficiency and the onset of infectious diseases and discusses the effects of curcumin and its derivatives on the immune response. In addition, we analyse some of the preclinical and clinical studies that support its possible use in prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can enhance the clinical use of curcumin.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98100 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Drug Combination Studies of the Dipeptide Nitrile CD24 with Curcumin: A New Strategy to Synergistically Inhibit Rhodesain of Trypanosoma brucei rhodesiense. Int J Mol Sci 2022; 23:ijms232214470. [PMID: 36430948 PMCID: PMC9698140 DOI: 10.3390/ijms232214470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Rhodesain is a cysteine protease that is crucial for the life cycle of Trypanosoma brucei rhodesiense, a parasite causing the lethal form of Human African Trypanosomiasis. CD24 is a recently developed synthetic inhibitor of rhodesain, characterized by a nanomolar affinity towards the trypanosomal protease (Ki = 16 nM), and acting as a competitive inhibitor. In the present work, we carried out a combination study of CD24 with curcumin, the multitarget nutraceutical obtained from Curcuma longa L., which we demonstrated to inhibit rhodesain in a non-competitive manner. By applying the Chou and Talalay method, we obtained an initial additive effect at IC50 (fa = 0.5, Combination Index = 1), while for the most relevant fa values, ranging from 0.6 to 1, i.e., from 60% to 100% of rhodesain inhibition, we obtained a combination index < 1, thus suggesting that an increasingly synergistic action occurred for the combination of the synthetic inhibitor CD24 and curcumin. Furthermore, the combination of the two inhibitors showed an antitrypanosomal activity better than that of CD24 alone (EC50 = 4.85 µM and 10.1 µM for the combination and CD24, respectively), thus suggesting the use of the two inhibitors in combination is desirable.
Collapse
|
8
|
Di Chio C, Zhou M, Efferth T, Schirmeister T, Zappalà M, Ettari R. Synthesis and Cytotoxicity of Diarylpentanoids against Sensitive CCRF-CEM and Multidrug-Resistant CEM/ADR5000 Leukemia Cells. Chem Biodivers 2021; 19:e202100451. [PMID: 34871465 DOI: 10.1002/cbdv.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
This article described the synthesis and biological investigation of a series of symmetric diarylpentanoids, characterized by a dienone moiety and by a different pattern of substitution on the two phenyl rings. The series of compounds 1a-p were tested against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 cells to evaluate their cytotoxic profile, and all the diarypentanoids revealed to be active against both the leukemia cell lines, with the best activity shown by compound 1o that showed a submicromolar activity against both CCRF-CEM and CEM/ADR5000 cell lines (EC50 =0.54 and 0.25 μM, respectively).
Collapse
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, Viale SS. Annunziata, 98168, Messina, Italy
| | - Min Zhou
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, Viale SS. Annunziata, 98168, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, Viale SS. Annunziata, 98168, Messina, Italy
| |
Collapse
|
9
|
Di Chio C, Previti S, De Luca F, Allegra A, Zappalà M, Ettari R. Drug combination studies of PS-1 and quercetin against rhodesain of Trypanosoma brucei rhodesiense. Nat Prod Res 2021; 36:4282-4286. [PMID: 34533390 DOI: 10.1080/14786419.2021.1978993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Rhodesain is a cysteine protease crucial for the survival of Trypanosoma brucei rhodesiense, the parasite able to induce the acute lethal form of Human African Trypanosomiasis. PS-1 is a synthetic peptidyl inhibitor of rhodesain, characterised by a picomolar binding affinity (Ki = 1.1 pM). Thus, considering the well-known antiparasitic properties of quercetin, in this study, we decided to carry out drug combination studies of PS-1 and quercetin against rhodesain, according to Chou and Talalay method, which allowed us to obtain for the most relevant fa values a nearly additive effect for the reduction of rhodesain activity from 40% to 90%, thus considering a promising strategy their use in combination.
Collapse
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Ettari R, Previti S, Di Chio C, Maiorana S, Allegra A, Schirmeister T, Zappalà M. Drug Synergism: Studies of Combination of RK-52 and Curcumin against Rhodesain of Trypanosoma brucei rhodesiense. ACS Med Chem Lett 2020; 11:806-810. [PMID: 32435388 DOI: 10.1021/acsmedchemlett.9b00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rhodesain is an enzyme essential for the life of Trypanosoma brucei rhodesiense, a parasite causing a rapid-onset form of Human African Trypanosomiasis. RK-52 is a synthetic inhibitor of rhodesain, characterized by an impressive k second value (k second = 67000 × 103 M-1 min-1) and by a picomolar affinity toward the trypanosomal protease (K i = 38 pM). Differently, curcumin, the golden multitarget nutraceutical obtained from Curcuma longa L., was proven to inhibit rhodesain noncompetitively with an IC50 of 7.75 μM. In the present study, we carried out studies of a combination of RK-52 and curcumin toward rhodesain, by applying the Chou and Talalay approach, which led us to obtain a combination index <1 for the most relevant fa values, which means a potent synergistic effect for the reduction of rhodesain activity from 40% to 99%.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Johann-Joachim-Becherweg 30, DE 55128 Mainz, Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
On the Reversible and Irreversible Inhibition of Rhodesain by Curcumin. Molecules 2019; 25:molecules25010143. [PMID: 31905815 PMCID: PMC6983121 DOI: 10.3390/molecules25010143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022] Open
Abstract
Previously, it was suggested that the natural compound curcumin is an irreversible inhibitor of rhodesain, the major lysosomal cysteine protease of the protozoan parasite Trypanosoma brucei. The suggestion was based on a time-dependent inhibition of the enzyme by curcumin and a lack of recovery of activity of the enzyme after pre-incubation with curcumin. This study provides clear evidence that curcumin is a reversible, non-competitive inhibitor of rhodesain. In addition, the study also shows that the apparent irreversible inhibition of curcumin is only observed when no thiol-reducing reagent is included in the measuring buffer and insufficient solubilising agent is added to fully dissolve curcumin in the aqueous solution. Thus, the previous observation that curcumin acts as an irreversible inhibitor for rhodesain was based on a misinterpretation of experimental findings.
Collapse
|
13
|
Ettari R, Previti S, Maiorana S, Allegra A, Schirmeister T, Grasso S, Zappalà M. Evaluation of curcumin irreversibility. Nat Prod Res 2019; 34:3159-3162. [PMID: 30676764 DOI: 10.1080/14786419.2018.1557658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Santina Maiorana
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology Department of General Surgery Pathological Anatomy and Oncology, University of Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, DE, Germany
| | - Silvana Grasso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Steverding D. Comments on "Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense". Nat Prod Res 2018; 34:751-753. [PMID: 30251878 DOI: 10.1080/14786419.2018.1500575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dietmar Steverding
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|