1
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
2
|
Cui B, Zheng T, Deng P, Zhang S, Zhao Z. Chemotaxonomic Variation in Volatile Component Contents in Ancient Platycladus orientalis Leaves with Different Tree Ages in Huangdi Mausoleum. Molecules 2023; 28:molecules28052043. [PMID: 36903288 PMCID: PMC10003951 DOI: 10.3390/molecules28052043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023] Open
Abstract
To gain insight into the differences in the composition and volatile components content in ancient Platycladus orientalis leaves with different tree ages in Huangdi Mausoleum, the volatile components were identified by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. The volatile components were statistically analyzed by orthogonal partial least squares discriminant analysis and hierarchical cluster analysis, and the characteristic volatile components were screened. The results exhibited that a total of 72 volatile components were isolated and identified in 19 ancient Platycladus orientalis leaves with different tree ages, and 14 common volatile components were screened. Among them, the contents of α-pinene (6.40-16.76%), sabinene (1.11-7.29%), 3-carene (1.14-15.12%), terpinolene (2.17-4.95%), caryophyllene (8.04-13.53%), α-caryophyllene (7.34-14.41%), germacrene D (5.27-12.13%), (+)-Cedrol (2.34-11.30%) and α-terpinyl acetate (1.29-25.68%) were relatively higher (>1%), accounting for 83.40-87.61% of the total volatile components. Nineteen ancient Platycladus orientalis trees were clustered into three groups through the HCA method based on the 14 common volatile components content. Combined with the results of OPLS-DA analysis, (+)-cedrol, germacrene D, α-caryophyllene, α-terpinyl acetate, caryophyllene, β-myrcene, β-elemene and epiglobulol were the differential volatile components to distinguish ancient Platycladus orientalis with different tree ages. The results revealed that the composition of the volatile components in ancient Platycladus orientalis leaves with different tree ages was different, showing different aroma characteristics, which provided a theoretical reference for the differential development and application of volatile components in ancient Platycladus orientalis leaves.
Collapse
Affiliation(s)
- Bei Cui
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
| | - Tao Zheng
- College of Biology Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ping Deng
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Sheng Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
- Correspondence: (S.Z.); (Z.Z.)
| | - Zhong Zhao
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Research Center for the Conservation and Breeding Engineering of Ancient Trees, Xianyang 712100, China
- Correspondence: (S.Z.); (Z.Z.)
| |
Collapse
|
3
|
Liu C, Lei Y, Li G, Yuan C, Lv Y, Yu S, Shao Y, Dang J. Three new dihydroflavonols with free radical scavenging activity from Ribes himalense Royle ex Decne. Nat Prod Res 2021; 36:5490-5498. [PMID: 34935575 DOI: 10.1080/14786419.2021.2017929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribes himalense Royle ex Decne, a small shrub, is widely used as a Tibetan medicine in Chinese folk. In this study, three novel 1,1-diphenyl-2-picrylhydrazyl inhibitors named Rihimaside A, Rihimaside B, and Rihimaside C, as well as one known 1,1-diphenyl-2-picrylhydrazyl inhibitor, dihydromyricetin, were isolated from the leaves and stems of Ribes himalense Royle ex Decne using online high performance liquid chromatography-1,1-diphenyl-2-picrylhydrazyl activity screening system combined with medium and high-pressure liquid chromatography. All four 1,1-diphenyl-2-picrylhydrazyl inhibitors are dihydroflavonols. The 1,1-diphenyl-2-picrylhydrazyl scavenging activity and IC50 values of three novel 1,1-diphenyl-2-picrylhydrazyl inhibitors were determined using 1,1-diphenyl-2-picrylhydrazyl methods. Rihimaside A, Rihimaside B, and Rihimaside C exhibited IC50 values of 9.58 μg/mL, 12.57 μg/mL and 387 μg/mL, respectively.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,University of Chinese Academy of Science, Beijing, China
| | - Yuqing Lei
- University of Chinese Academy of Science, Beijing, China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, China
| | - Chen Yuan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, China
| | - Yue Lv
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, China
| | - Song Yu
- Department of Medical College, Qinghai University, Xining, China
| | - Yun Shao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Jun Dang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
4
|
Darwish RS, Hammoda HM, Ghareeb DA, Abdelhamid ASA, Harraz FM, Shawky E. Chemical profiling and identification of anti-inflammatory biomarkers of oriental Thuja ( Platycladus orientalis) using UPLC/MS/MS and network pharmacology-based analyses. Nat Prod Res 2021; 36:4782-4786. [PMID: 34866494 DOI: 10.1080/14786419.2021.2010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Platycladus orientalis L. Franco has many folk uses as it is mainly used to treat inflammatory ailments. UPLC-MS/MS was used for the chemical profiling of P. orientalis leaves. Identified metabolites were forwarded to network pharmacology analysis. Networks were constructed based on STITCH, SEA, DAVID, KEGG and STRING databases and using Cytoscape. The identified hit compounds were afzelin, myricetin, apigenin-7-O-hexoside, quercetrin and hyperoside. IL2, VEGFA, AKT1, AKT2, CREB1, IL5, RPS6KB1 and TNF were the main inflammation-related targets identified. Quercetrin and hyperoside were tested for their anti-inflammatory activity. it can be concluded that, the identified hit compounds exhibited strong synergistic interactions with the inflammation and immunity-related targets and pathways.
Collapse
Affiliation(s)
- Reham S Darwish
- Faculty of Pharmacy, Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Hala M Hammoda
- Faculty of Pharmacy, Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt.,Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Ali S A Abdelhamid
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Fathallah M Harraz
- Faculty of Pharmacy, Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Eman Shawky
- Faculty of Pharmacy, Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Chen Y, Zhong X, Yang X, Zhu S, Jiang Y, Jin C. A mitochondria-targeted fluorescent probe for monitoring endogenous cysteine in living cells and zebrafish. Chem Commun (Camb) 2021; 57:8198-8201. [PMID: 34304258 DOI: 10.1039/d1cc03307g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At the organelle level, pathogenesis due to abnormal concentrations of cysteine (Cys) is of great significance for the early diagnosis and treatment of related diseases. Generally speaking, organelle localization requires the participation of specific target groups, which increases the difficulty of synthesis. Herein, through simple synthesis, a novel biflavone derivative (BFD) that exhibits excited-state intramolecular proton transfer (ESIPT) was obtained and successfully located in mitochondria without target groups. The probe BFD can distinguish Cys from Hcy and GSH with a rapid response (< 5 s) and showed visual detection for Cys with a large Stokes shift (about 260 nm). Because of its nanomorphology in solution and surface functional groups, the probe BFD can enter the cell smoothly and achieve mitochondrial localization. Owing to its excellent optical performance, the probe BFD was successfully applied to the imaging of endogenous Cys in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Yingshuang Chen
- Nanjing Normal Univ., Jiangsu Collaborat. Innovat. Ctr Biomed. Funct. Mat., Jiangsu Key Lab. Biofunct Mat., Sch. Chem. & Mat. Sci., Nanjing 210023, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Darwish RS, Hammoda HM, Ghareeb DA, Abdelhamid ASA, Harraz FM, Shawky E. Seasonal dynamics of the phenolic constituents of the cones and leaves of oriental Thuja ( Platycladus orientalis L.) reveal their anti-inflammatory biomarkers. RSC Adv 2021; 11:24624-24635. [PMID: 35481004 PMCID: PMC9036908 DOI: 10.1039/d1ra01681d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, the seasonal dynamics of the flavonoids in the cones and leaves of oriental Thuja (Platycladus orientalis L. Franco) as well as the in vitro anti-inflammatory activity of their extracts were investigated. The important chemical markers of the studied extracts were determined using untargeted HPTLC profiling, which was further utilized to assess the seasonality effect on the composition of these metabolites over three seasonal cycles. A quantitative HPTLC method was developed and validated for the identified chemical markers of oriental Thuja: hyperoside, quercetrin, isoscutellarein-7-O-β-xyloside, cupressuflavone, hinokiflavone, sotetsuflavone and isoscutellarein-8-methyl ether. The highest amounts of flavonoids were observed during the summer and winter seasons, where the leaves possessed higher contents of flavonoids compared to cones. Flavone glycosides are a major class of flavones encountered in leaves, while the cones mainly accumulated biflavones. The results showed that the effect of seasonal variation on the accumulation of flavonoids within the cones was less pronounced than in the leaves. The summer leaves showed a remarkable reduction in the levels of INF-γ, where the value decreased to 80.7 ± 1.25 pg mL-1, a significantly lower level than that obtained with piroxicam (180 ± 1.47 pg mL-1); this suggests a noteworthy anti-inflammatory potential. OPLS (orthogonal projection to latent structures) models showed that flavonoidal glycosides, quercetrin, hyperoside and isoscutellarein-7-O-β-xyloside were the most contributing biomarkers to the reduction in pro-inflammatory mediators in LPS-stimulated WBCs. The results obtained in the study can thus be exploited to establish the best organs as well as the optimal periods of the year for collecting and obtaining certain biomarkers at high concentrations to guarantee the efficacy of the obtained extracts.
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University Alexandria Egypt
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City) Borg Al-Arab Alexandria Egypt
| | - Ali S A Abdelhamid
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City) Borg Al-Arab Alexandria Egypt
| | - Fathallah M Harraz
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| |
Collapse
|
7
|
Cherfia R, Zaiter A, Akkal S, Chaimbault P, Abdelwahab AB, Kirsch G, Kacem Chaouche N. New approach in the characterization of bioactive compounds isolated from Calycotome spinosa (L.) Link leaves by the use of negative electrospray ionization LITMS n, LC-ESI-MS/MS, as well as NMR analysis. Bioorg Chem 2019; 96:103535. [PMID: 32000017 DOI: 10.1016/j.bioorg.2019.103535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Two novel compounds were isolated for the first time from Calycotome spinosa (L.) Link, an alkaloid 5-Hydroxy-1H-indole (4) and a cyclitol D-pinitol (5), together with the three well-known flavonoids; Chrysin-7-O-(β-D-glucopyranoside) (1), Chrysin-7-O-β-D-(6″-acetyl)glycopyranoside (2) and Apigenin-7-O-β-D-glycopyranoside (3). The chemical structures of the isolated compounds were elucidated by spectroscopic data and mass spectrometric analyses; including a fresh approach 1D-NMR, 2D-NMR with LC-ESI-MS/MS. In this study, the new compound (4) that has been obtained from the leaves MeOH extract presented the best radical scavenging activity (DPPH) (IC50 < 10 µg/mL) compared to the standard butylated hydroxytoluene (BHT, IC50 = 34.73 ± 0.23 μg/mL) and showed the highest total antioxidant capacity (TAC = 985.54 ± 0.13 mg AAE/g extract) in contrast to ascorbic acid (TAC = 905.95 ± 0.07 mg AAE/g extract). Furthermore, the strongest reducing power (EC50 = 344.82 ± 0.02 µg/mL), as well as the remarkable scavenging potential by ABTS assay (IC50 = 7.8 ± 0.43 µg/mL), were exhibited by the same composite (4). Followed by the methanol crude extract and the compound (3) that also showed a potent antioxidant (DPPH; IC50 = 41.04 ± 0.15 and 47.36 ± 0.21 µg/mL, TAC; 671.02 ± 0.21 and 608.67 ± 0.34 mg AAE/g extract, FRAP; EC50 = 763.73 ± 0.32 and 814.61 ± 0.31 µg/mL, ABTS; IC50 = 19.18 ± 0.06 and 63.72 ± 0.64 µg/mL, respectively), but less than the previous samples. On the opposite side, compound (5) had the lowest activity, in which its values were less interesting to determine. Moreover, compound (4) has equally exerted an attractive antibacterial activity against Staphylococcus aureus (ATTC-25923), Pseudomonas aeruginosa (ATTC- 27853) and Salmonella abony (NCTC 6017), as measured by the disc diffusion assay, with inhibition zones of 16 ± 0.5, 9.83 ± 0.29 and 8 ± 0.28 mm, in that order. To the best of our knowledge, 5-Hydroxy-1H-indole was isolated from plants for the second time in our current work. Thus, the obtained results from this investigation propose that the leaves of C. spinosa are a rich natural source for value molecules as potential antioxidants and antimicrobial agents for best human health.
Collapse
Affiliation(s)
- Radia Cherfia
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria.
| | - Ali Zaiter
- Laboratoire de Chimie et Physique-Approche Multi-échelles des Milieux Complexes (LCP-A2MC), Université de Lorraine -METZ- France Boulevard Arago, Metz Technopole Cedex 03 F-57078, France
| | - Salah Akkal
- Laboratoire de Phytochimie et Analyses Physico-chimiques et Biologiques, Université des Frères Mentouri, Constantine 1, Route de Aïn El Bey, Constantine 25017, Algeria
| | - Patrick Chaimbault
- Laboratoire de Chimie et Physique-Approche Multi-échelles des Milieux Complexes (LCP-A2MC), Université de Lorraine -METZ- France Boulevard Arago, Metz Technopole Cedex 03 F-57078, France
| | - Ahmed Bakr Abdelwahab
- Laboratoire de Chimie et Physique-Approche Multi-échelles des Milieux Complexes (LCP-A2MC), Université de Lorraine -METZ- France Boulevard Arago, Metz Technopole Cedex 03 F-57078, France
| | - Gilbert Kirsch
- Laboratoire de Chimie et Physique-Approche Multi-échelles des Milieux Complexes (LCP-A2MC), Université de Lorraine -METZ- France Boulevard Arago, Metz Technopole Cedex 03 F-57078, France
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| |
Collapse
|