1
|
Li X, Cai J, Chen X, Wu Y, Liu Y, Luo X, Zhou X. Discovery and Bioactivity Evaluation of Citrinin Derivatives from the Mangrove Sediment-Derived Fungus Talaromyces sp. SCSIO 41428. Chem Biodivers 2025; 22:e202401938. [PMID: 39242361 DOI: 10.1002/cbdv.202401938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
A dimeric citrinin derivative with a unique spiro[chroman-2,3'-isochroman] skeleton, xerucitrinic acid C (1), and a new citrinin derivative, cladosporin E (6), along with ten known polyketides (2-5 and 7-12), were isolated from the mangrove sediment-derived fungus Talaromyces sp. SCSIO 41428. Their structures were elucidated through comprehensive spectral data analysis. The absolute configurations of 1 and 6 were determined by quantum chemical calculations. Compound 1 exhibited significant inhibitory effects on Staphylococcus aureus and Streptococcus suis, with the MIC of 25 μg/mL for both bacterial strains. Xerucitrinin C (3) exhibited significant radical scavenging activity against DPPH, with an IC50 value of 25.4 μM, and also demonstrated inhibitory activity against phosphodiesterase-4 (PDE4). Moreover, cladosporin C (7) notably inhibited prostate cancer cells PC-3 and 22Rv1, with IC50 values of 6.10 and 9.25 μM, respectively.
Collapse
Affiliation(s)
- Xinlong Li
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinqi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanghongyu Wu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Tie Q, Wang M, Huang X, Chen Y, Liu Y, Yang B, Li Y. A new indole alkaloid from Cladosporium sp. SCSIO41205. Nat Prod Res 2025; 39:275-278. [PMID: 37746840 DOI: 10.1080/14786419.2023.2261610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A new indole compound, N-hydroxy-N-(2-(1-hydroxy-2-methoxy-1H-indol-3-yl)ethyl acetamide (1), together with four known compounds, N-(2-(1H-indol-3-yl)ethylacetamide (2), N-acetylamicoumacin C (3), N-(2-phenylethyl)acetamide (4), and (2 R,3S)-1-(4-hydroxyphenyl)butane-2,3-diol (5) were isolated from Cladosporium sp. SCSIO41205. Their structures were established by detailed analysis of the NMR and HR-ESI-MS data.
Collapse
Affiliation(s)
- Qingqing Tie
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| | - Mengqin Wang
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| | - Xiaowen Huang
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| | - Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yunqiu Li
- Pharmacy School of Guilin Medical University, Guilin, P. R. China
| |
Collapse
|
3
|
Xi Y, Wang H, Sun L, Ma X, Zhang S, Zhang Z. Recent advances in the structures and bioactivities of benzopyrans derived from marine fungi: a review. Front Pharmacol 2024; 15:1482316. [PMID: 39512833 PMCID: PMC11540774 DOI: 10.3389/fphar.2024.1482316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Marine fungi represent a treasure trove of bioactive secondary metabolites, with benzopyran compounds emerging as a significant class of these natural products. This review delves into the structural diversity, biological activities, and sources of benzopyran compounds, highlighting their isolation from marine fungi inhabiting diverse environments such as sponges, marine sediments, algae, mangroves, and corals. Our literature search, conducted from 2000 to 2023, has identified a wealth of benzopyran compounds, showcasing their potential as lead compounds in drug development. The characteristics of benzopyran from marine fungi are explored, encompassing various subclasses such as chromones, isocoumarins, citrinins, and other related compounds. These compounds exhibit a remarkable chemical diversity, which is crucial for their diverse biological activities. The potential of benzopyran compounds in drug development is also discussed, emphasizing their roles in anti-tumor, antibacterial, anti-inflammatory, and enzyme inhibitory activities. In recent years, a remarkable 210 bioactive benzopyran compounds have been isolated from the secondary metabolites of marine fungi. These findings underscore the importance of marine fungi as a source of novel bioactive compounds, offering a plethora of potential lead compounds for the development of marine-derived drugs. This review aims to provide a comprehensive overview of the current state of research on benzopyran compounds, setting the stage for future advancements in the field of marine natural products.
Collapse
Affiliation(s)
- Yidan Xi
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Lixiang Sun
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xueyang Ma
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Shuncun Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
4
|
Wei J, Chen X, Wu B. Dicitrinols A-C: Citrinin Derivatives from Hydrothermal Vent-Associated Fungus Penicillium citrinum TW132-59. J Org Chem 2024; 89:15264-15270. [PMID: 39367845 DOI: 10.1021/acs.joc.4c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Three new unusual citrinin derivatives with a unique 6/5/7/5 core, dicitrinols A-C (1-3, respectively), were isolated via the fermentation of hydrothermal vent-associated fungus Penicillium citrinum TW132-59. Their structures were unambiguously determined by nuclear magnetic resonance, mass spectrometry, and electronic circular dichroism calculations. Dicitrinols A-C represent a novel cage carbon skeleton with a decahydro-5,9,4-(epipropane[1,1,3]triyl)cycloocta[b]furan ring system. Dicitrinols A-C showed moderate antifungal activity against Candida albicans, Cryptococcus neoformans, and Fusarium oxysporum and antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii with minimum inhibitory concentrations ranging from 4 to 16 μg/mL.
Collapse
Affiliation(s)
- Jihua Wei
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Proya Cosmetics Company, Ltd., Hangzhou 321000, China
| | - Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
5
|
He YP, Xiang J, Shao XH, Feng C, Zhang Q, Wang YM, Zhang CX. New polyketides from the starfish-derived symbiotic fungus Penicillium sp. GGF16-1-2. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-10. [PMID: 38334077 DOI: 10.1080/10286020.2024.2311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
One new rare carbon-bridged citrinin dimer quinocitrindimer C (1) as a pair of epimers, two new polyketide penicilliodes D (3) and E (4) together with nine known citrinin derivatives, were isolated from the fermentation broth of starfish-derived symbiotic fungus Penicillium sp. GGF16-1-2. Their structures and configurations were elucidated by comprehensively spectroscopic data analysis and electronic circular dichroism calculations. Eleven citrinin derivatives were tested by Colletotrichum gloeosporioides, and compound 2 played a significant antifungal activity against Colletotrichum gloeosporioides with LC50 value of 0.27 μg/ml.
Collapse
Affiliation(s)
- Yu-Pei He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jun Xiang
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xue-Hua Shao
- Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangzhou 510640, China
| | - Chan Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
6
|
Li Y, Wang Y, Wang H, Shi T, Wang B. The Genus Cladosporium: A Prospective Producer of Natural Products. Int J Mol Sci 2024; 25:1652. [PMID: 38338931 PMCID: PMC10855219 DOI: 10.3390/ijms25031652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Cladosporium, a genus of ascomycete fungi in the Dematiaceae family, is primarily recognized as a widespread environmental saprotrophic fungus or plant endophyte. Further research has shown that the genus is distributed in various environments, particularly in marine ecosystems, such as coral reefs, mangroves and the polar region. Cladosporium, especially the marine-derived Cladosporium, is a highly resourceful group of fungi whose natural products have garnered attention due to their diverse chemical structures and biological activities, as well as their potential as sources of novel leads to compounds for drug production. This review covers the sources, distribution, bioactivities, biosynthesis and structural characteristics of compounds isolated from Cladosporium in the period between January 2000 and December 2022, and conducts a comparative analysis of the Cladosporium isolated compounds derived from marine and terrestrial sources. Our results reveal that 34% of Cladosporium-derived natural products are reported for the first time. And 71.79% of the first reported compounds were isolated from marine-derived Cladosporium. Cladosporium-derived compounds exhibit diverse skeletal chemical structures, concentrating in the categories of polyketides (48.47%), alkaloids (19.21%), steroids and terpenoids (17.03%). Over half of the natural products isolated from Cladosporium have been found to have various biological activities, including cytotoxic, antibacterial, antiviral, antifungal and enzyme-inhibitory activities. These findings testify to the tremendous potential of Cladosporium, especially the marine-derived Cladosporium, to yield novel bioactive natural products, providing a structural foundation for the development of new drugs.
Collapse
Affiliation(s)
- Yanjing Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Yifei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Han Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Ting Shi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| |
Collapse
|
7
|
Wei S, Sang Z, Zhang Y, Wang H, Chen Y, Liu H, Wang S, Tan H. Peniciriols A and B, two new citrinin derivatives from an endophytic fungus Penicillum citrinum TJNZ-27. Fitoterapia 2023; 169:105572. [PMID: 37315718 DOI: 10.1016/j.fitote.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Two undescribed citrinin derivatives, named peniciriols A-B (1-2), together with six known compounds were isolated from endophytic fungus Penicillum citrinum TJNZ-27. The structures of two new compounds were well established by the detail interpretation of NMR and HRESIMS data as well as ECD measurement powered by molecular calculation. Among them, compound 1 shared an unprecedented dimerized citrinin skeleton with the formation of an intriguing 9H-xanthene ring system, whereas compound 2 possess a highly substituted phenylacetic acid skeleton, which was rarely-occurring in natural secondary metabolites. Moreover, these novel compounds were tested for cytotoxic and antibacterial activities, whereas these novel compounds did not exhibit any noticeable cytotoxic or antibacterial activities.
Collapse
Affiliation(s)
- Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China
| | - Yan Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, People's Republic of China.
| |
Collapse
|
8
|
Sallam A, El-Metwally M, Sabry MA, Elsbaey M. Cladamide: a new ceramide from the endophytic fungus Cladosporium cladosporioides. Nat Prod Res 2023; 37:1082-1091. [PMID: 34622719 DOI: 10.1080/14786419.2021.1986709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new ceramide, named cladamide (1), in addition to cinnamic acid (2), para-coumaric acid (3), stigmasterol-3-O-β-D-glucoside (4), and uracil (5), was isolated from the white beans culture of Cladosporium cladosporioides, a marine-derived endohpytic fungus isolated from the leaves of the mangrove, Avicennia marina (Forssk.) Vierh. Structure elucidation of compound 1 was established on the basis of extensive 1D and 2D NMR spectroscopic techniques in combination with HR-ESI-MS. The ability of the isolated compounds to inhibit acetylcholine esterase was evaluated. Compound 3 showed the highest acetylcholine esterase inhibitory activity (IC50 = 0.057 ± 0.003 µM), followed by compound 4 (IC50 = 0.068 ± 0.003 µM) and compound 1 (IC50 = 0.099 ± 0.005 µM) compared to donepezil, the positive control, (IC50 = 0.044 ± 0.002 µM). Compounds 2 and 5 showed lower activity (IC50 = 0.182 ± 0.009 and 0.236 ± 0.012 µM, respectively). The results were further validated by molecular docking study.
Collapse
Affiliation(s)
- Amal Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Metwally
- Division of Marine Environment, National Institute of Oceanography and Fisheries, Hurgada, Egypt
| | - Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa Elsbaey
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Wei J, Chen X, Ge Y, Yin Q, Wu X, Tang J, Zhang Z, Wu B. Citrinin Monomer, Trimer, and Tetracyclic Alkaloid Derivatives from the Hydrothermal Vent-Associated Fungus Penicillium citrinum TW132-59. J Org Chem 2022; 87:13270-13279. [PMID: 36131357 DOI: 10.1021/acs.joc.2c01856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five new unusual citrinin-derived alkaloids with a tetracyclic core, citrinidines A-E (1-5), two new amide alkaloids, methyl (2S,8E)-1'-(2-methyl-3-oxodec-8-enamido) butanoate (6) and (2S,8E)-2-methyl-3-oxodec-8-enamide (7), a new unusual citrinin trimer, tricitrinol C (8), a new citrinin acetal-ketal derivative, citrininol (9), together with four known citrinin monomers (10-13), and three known citrinin dimers (14-16), were isolated from the fermentation of hydrothermal vent-associated fungus Penicillium citrinum TW132-59. Their structures were unambiguously determined by nuclear magnetic resonance (NMR), mass spectrometry, Mosher's method, 13C NMR calculation in combination with DP4+, and ECD calculations. A plausible biosynthetic pathway of all new compounds (1-9) was proposed. Citrinin trimer (8) exhibited potent cytotoxicity activity with an IC50 value of 1.34 ± 0.11 μM, and compounds 1 and 15 showed moderate cytotoxicity with IC50 values of 17.50 ± 1.43 and 9.45 ± 0.55 μM, respectively, against A549 cell line.
Collapse
Affiliation(s)
- Jihua Wei
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yichao Ge
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Qizhao Yin
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiaodan Wu
- Center of Analysis, Zhejiang University, Hangzhou 310058, China
| | - Jinshan Tang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zunjing Zhang
- Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
10
|
Han WR, Song MM, Hu YW, Pang XY, Liao SR, Yang B, Zhou XF, Liu YH, Liu QC, Wang JF. Citrinin and α-pyrone derivatives with pancreatic lipase inhibitory activities from Penicillium sp. SCSIO 41302. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:810-819. [PMID: 34762531 DOI: 10.1080/10286020.2021.1998009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
One new citrinin monomer derivative (1), and two new natural products α-pyrone analogues (2a and 2b), were isolated from the sponge derived fungus Penicillium sp. SCSIO 41302. Their structures were determined by extensive spectroscopic analysis, chiral-phase HPLC analysis, modified Mosher's method, ECD calculations, and X-ray single-crystal diffraction. Bioactivity screening showed that compounds 2b and 8 exhibited obvious inhibitory activities against pancreatic lipase and acetyl cholinesterase with IC50 values of 48.5 and 4.8 μM, respectively, which indicated that different chiral center between enantiomers (2a and 2b) might result in different biological activities (IC50 value against PL for 2a >100 μg/ml).
Collapse
Affiliation(s)
- Wen-Rong Han
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an 710069, China
| | - Meng-Meng Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an 710069, China
| | - Yi-Wei Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiao-Yan Pang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Sheng-Rong Liao
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Bin Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Xue-Feng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Yong-Hong Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Qing-Chao Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an 710069, China
| | - Jun-Feng Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| |
Collapse
|
11
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
12
|
Kuan TH, Kotipalli T, Chen CC, Hou DR. Addition of benzyl ethers to alkynes: a metal-free synthesis of 1 H-isochromenes. Org Biomol Chem 2021; 19:10390-10402. [PMID: 34825694 DOI: 10.1039/d1ob01941d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bromotrimethylsilane (TMSBr)-promoted intramolecular cyclization of (o-arylethynyl)benzyl ethers to form 1H-isochromenes at room temperature is reported. Further studies indicated that vinyl carbocations are the reaction intermediates which are stabilized by the conjugated aryl groups. Thus, O-addition of benzyl ethers/tetrahydropyrans to alkynes was achieved under metal-free, acidic conditions. These reaction conditions were compatible with an alkynyl Prins reaction; therefore, 1H-isochromenes were produced directly from alkynyl benzaldehydes and alkynyl alcohols using a one-pot procedure.
Collapse
Affiliation(s)
- Tzu-Hsuan Kuan
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Trimurtulu Kotipalli
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Cheng-Chun Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, 32001, Taiwan.
| |
Collapse
|
13
|
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021; 19:645. [PMID: 34822516 PMCID: PMC8622643 DOI: 10.3390/md19110645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
14
|
The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds. Molecules 2021; 26:molecules26133959. [PMID: 34203561 PMCID: PMC8271404 DOI: 10.3390/molecules26133959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/18/2023] Open
Abstract
Fungi are renowned as one of the most fruitful sources of chemodiversity and for their ubiquitous occurrence. Among the many taxonomic groupings considered for the implications deriving from their biosynthetic aptitudes, the genus Cladosporium stands out as one of the most common in indoor environments. A better understanding of the impact of these fungi on human health and activities is clearly based on the improvement of our knowledge of the structural aspects and biological properties of their secondary metabolites, which are reviewed in the present paper.
Collapse
|
15
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|
16
|
Wilson ZE, Brimble MA. Molecules derived from the extremes of life: a decade later. Nat Prod Rep 2020; 38:24-82. [PMID: 32672280 DOI: 10.1039/d0np00021c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: Early 2008 until the end of 2019Microorganisms which survive (extreme-tolerant) or even prefer (extremophilic) living at the limits of pH, temperature, salinity and pressure found on earth have proven to be a rich source of novel structures. In this update we summarise the wide variety of new molecules which have been isolated from extremophilic and extreme-tolerant microorganisms since our original 2009 review, highlighting the range of bioactivities these molecules have been reported to possess.
Collapse
Affiliation(s)
- Zoe E Wilson
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | |
Collapse
|
17
|
Han X, Bao XF, Wang CX, Xie J, Song XJ, Dai P, Chen GD, Hu D, Yao XS, Gao H. Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp. Nat Prod Res 2019; 35:1115-1121. [PMID: 31307232 DOI: 10.1080/14786419.2019.1641807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cladosporine A (1), a new indole diterpenoid alkaloid, was isolated from the extract of a fungal strain Cladosporium sp. JNU17DTH12-9-01. Its structure was elucidated by extensive spectroscopic analysis, and the absolute configurations were determined by electronic circular dichroism (ECD) experiments. This is the first report of the presence of indole diterpenoid alkaloid in the genus Cladosporium. The antimicrobial activities against Staphylococcus aureus 209P, Escherichia coli ATCC0111, Aspergillus niger R330, and Candida albicans FIM709 were evaluated. Compound 1 showed MICs of 4 μg/mL and 16 μg/mL against S. aureus 209P and C. albicans FIM709, respectively.
Collapse
Affiliation(s)
- Xue Han
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xue-Feng Bao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Jun Xie
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xiao-Jun Song
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ping Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|