1
|
Li R, Su Z, Sun C, Wu S. Antibacterial insights into alternariol and its derivative alternariol monomethyl ether produced by a marine fungus. Appl Environ Microbiol 2024; 90:e0005824. [PMID: 38470179 PMCID: PMC11022538 DOI: 10.1128/aem.00058-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.
Collapse
Affiliation(s)
- Rongmei Li
- College of Life Sciences, Qingdao University, Qingdao, China
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhenjie Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Peng W, Tan J, Sang Z, Huang Y, Xu L, Zheng Y, Qin S, Tan H, Zou Z. Koninginins X-Z, Three New Polyketides from Trichoderma koningiopsis SC-5. Molecules 2023; 28:7848. [PMID: 38067579 PMCID: PMC10707852 DOI: 10.3390/molecules28237848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Koninginins X-Z (1-3), three novel polyketides, were isolated from the solid fermentation of the endophytic fungus Trichoderma koningiopsis SC-5. Their structures, including the absolute configurations, were comprehensively characterized by a combination of NMR spectroscopic methods, HRESIMS, 13C NMR, DFT GIAO 13C NMR, and electronic circular dichroism calculations as well as single crystal X-ray diffraction. In addition, all the compounds were evaluated for antifungal activity against Candida albicans.
Collapse
Affiliation(s)
- Weiwei Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Jianbing Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Zihuan Sang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Yuantao Huang
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China;
| | - Li Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Yuting Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Siyu Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Haibo Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (W.P.); (J.T.); (Z.S.); (L.X.); (Y.Z.); (S.Q.)
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| |
Collapse
|
3
|
Huang L, Wei M, Li L, Li Q, Sun W, Yu X, Wang F, Hu Z, Chen C, Zhu H, Zhang Y. Polyketides with Anti-Inflammatory Activity from Trichoderma koningiopsis, a Rhizosphere Fungus from the Medicinal Plant Polygonum paleaceum. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37449914 DOI: 10.1021/acs.jnatprod.2c00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Twelve new fungal polyketides, koningiopisins I-P (1-8) and trichoketides C-F (9-12), together with six known congeners (13-18), were isolated from Trichoderma koningiopsis, a rhizosphere fungus obtained from the medicinal plant Polygonum paleaceum. Their structures and absolute configurations were established by spectroscopic analysis, single-crystal X-ray diffraction, the modified Mosher's method, chemical derivatization, the octant rule, and 13C NMR and ECD calculations. Compounds 1-5 are tricyclic polyketides possessing an octahydrochromene framework with a 6,8-dioxabicyclo[3.2.1]octane core. Compounds 7 and 8 contain a unique ketone carbonyl group at C-7 and differ from other members of this group of compounds with the ketone carbonyl group at C-1. Compounds 1, 2, and 13 showed inhibitory activity on LPS-induced BV-2 cells on NO production with IC50 values of 14 ± 1, 3.0 ± 0.5, and 8.9 ± 2.7 μM, respectively.
Collapse
Affiliation(s)
- Liping Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lanqin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaotan Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
4
|
Lin J, Huo RY, Hou L, Jiang S, Wang SL, Deng YL, Liu L. New polyketides from the basidiomycetous fungus Pholiota sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-9. [PMID: 36250229 DOI: 10.1080/10286020.2022.2132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Two new polyketides, pholiotones B and C (1 and 2), and four known compounds, trichodermatide D (3), vermistatin (4), dehydroaltenuene A (5) and terpestacin (6) were isolated from the crude extract of Pholiota sp. Their structures were identified by NMR and MS spectroscopic data. The absolute configurations of compounds 1 and 2 were elucidated by modified Mosher's method, electronic circular dichroism (ECD) calculations and 13C NMR calculations as well as DP4+ probability analyses. All the compounds were evaluated for their antifungal and cytotoxicity.
Collapse
Affiliation(s)
- Jie Lin
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Rui-Yun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Hou
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Shan Jiang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Shu-Lin Wang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yan-Ling Deng
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
5
|
Rollando R, Warsito W, Masruri M, Widodo W. Pterygota alata (Roxb.) R.Br. Bark Fraction Induced Intrinsic Apoptotic Pathway in 4T1 Cells by Decreasing Bcl-2 and Inducing Bax Expression. Pak J Biol Sci 2021; 24:172-181. [PMID: 33683045 DOI: 10.3923/pjbs.2021.172.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Pterygota alata (Roxb.) R.Br. bark extract has been studied to have cytotoxic activity on 4T1 cells. This study was conducted to determine the cytotoxic activity of several fractions of Pterygota alata (Roxb.) R.Br. bark against 4T1 breast cancer cells and to investigate the most active fractions on Bcl-2 and Bax expressions. MATERIALS AND METHODS The bark of Pterygota alata (Roxb.) R.Br. was extracted using 80% methanol and was fractionated into fractions of n-hexane, chloroform, ethyl acetate, n-butanol and insoluble n-butanol with liquid-liquid partition. Cytotoxic tests were performed using the MTT method and expressions of Bax and Bcl-2 on 4T1 breast cancer cells were detected with immunocytochemical staining. Identification of compounds in the most active fraction using GC-MS. RESULTS The results showed that the most active fraction was the insoluble fraction of n-butanol (IFB) with an IC50 of 15.14 μg mL-1. IFB also decreases the expression of Bcl-2 and increases the expression of Bax. CONCLUSION It can be concluded that Pterygota alata (Roxb.) R.Br. bark has the potential to be developed for medical use, especially for breast cancer therapy.
Collapse
|