1
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Liu Y, Xin H, Zhang Y, Che F, Shen N, Cui Y. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): A Comprehensive Review of Traditional Uses, phytochemistry, pharmacology, resource utilization and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115645. [PMID: 35988840 DOI: 10.1016/j.jep.2022.115645] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae) is a treasure species with high medicinal value. The Ming Dynasty "Compendium of Materia Medica" and Qing Dynasty "Bencao Fengyuan" in China recorded this herbal medicine can reduce phlegm, clear poison, treat diarrhea and frequent urination, etc. AIM OF THE STUDY: Until now, there is no painstakingly summarized review on leaves, seeds and exocarp of G. biloba simultaneously. This review will systematically summarize and compare current knowledge of G. biloba. MATERIALS AND METHODS Ample original publications related to traditional uses, phytochemistry, pharmacology, resource utilization and toxicity of G. biloba leaves, seeds and exocarp till the end of 2021 were searched and collected by using various literature databases, including China National Knowledge Infrastructure, PubMed, Elsevier, Springer, Google Scholar and Web of Science database. RESULTS According to classical Chinese herbal books and Chinese Pharmacopoeia, relieving cough, reducing phlegm, clearing poison and relieving diarrhea are the main pharmacological effects of G. biloba. The common chemical ingredients in different parts of G. biloba are flavonoids, terpenoids, phenolic acids, polysaccharides and endotoxin, etc. Among them, flavonoids and terpenoids are the main bioactive compounds in G. biloba leaves. Phenolic acids are the main bioactive compounds in G. biloba exocarp. G. biloba seeds are rich in nutritional ingredients, such as starch, adipose, protein, etc. Modern pharmacological studies showed that the crude extracts or compounds of G. biloba leaves, seeds and exocarp can be used for treating cardiovascular and cerebrovascular diseases, Alzheimer's disease, atherosclerosis, cancer, asthma, non-alcoholic fatty liver, diabetic complications and other diseases. In daily life, G. biloba seeds were usually used as raw material or additives for commodities, healthy food, drinks, even insecticides and antibacterial agents, etc. G. biloba leaves and seeds have been mainly applied for treating cardiovascular and cerebrovascular diseases, cough and asthma in clinical. However, endotoxins and ginkgolic acids have been identified as the dominating toxic ingredients in different parts of G. biloba. Besides, flavonoids and ginkgolides also have been proved to have toxicity recently. CONCLUSIONS This review systematically sums up and compares the traditional uses, phytochemistry, pharmacology, resource utilization and toxicity research progress of G. biloba leaves, seeds and exocarp for the first time. It will provide some comprehensive reference data and suggestions for future research on this herbal medicine.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Yunchao Zhang
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China; Linyi People's Hospital, Linyi, 276000, Shandong, China.
| |
Collapse
|
3
|
Zhang J, Zhu Y, Si J, Wu L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr Res Food Sci 2022; 5:1882-1896. [PMID: 36276242 PMCID: PMC9579210 DOI: 10.1016/j.crfs.2022.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.
Collapse
|
4
|
Microbial endophytes: application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 2022; 106:5359-5384. [PMID: 35902410 DOI: 10.1007/s00253-022-12078-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Microbial endophytes are ubiquitous and exist in each recognised plant species reported till date. Within the host plant, the entire community of microbes lives non-invasively within the active internal tissues without causing any harm to the plant. Endophytes interact with their host plant via metabolic communication enables them to generate signal molecules. In addition, the host plant's genetic recombination with endophytes helps them to imitate the host's physicochemical functions and develop identical active molecules. Therefore, when cultured separately, they begin producing the host plant phytochemicals. The fungal species Penicillium chrysogenum has portrayed the glory days of antibiotics with the invention of the antibiotic penicillin. Therefore, fungi have substantially supported social health by developing many bioactive molecules utilised as antioxidant, antibacterial, antiviral, immunomodulatory and anticancerous agents. But plant-related microbes have emanated as fountainheads of biologically functional compounds with higher levels of medicinal perspective in recent years. Researchers have been motivated by the endless need for potent drugs to investigate alternate ways to find new endophytes and bioactive molecules, which tend to be a probable aim for drug discovery. The current research trends with these promising endophytic organisms are reviewed in this review paper. KEY POINTS: • Identified 54 important bioactive compounds as agricultural relevance • Role of genome mining of endophytes and "Multi-Omics" tools in sustainable agriculture • A thorough description and graphical presentation of agricultural significance of plant endophytes.
Collapse
|
5
|
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem 2022; 22:1009-1019. [PMID: 35189804 DOI: 10.2174/1568026622666220221110506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Flavonoids, a wide variety of phenolic secondary metabolites, are found in almost all plant families in the leaves, stems, roots, flowers, and seeds. Flavonoids could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism, and inhibiting the synthesis of nucleic acids, so flavonoids are considered constitutive antibacterial substances. This review aims to outline the recent advances of natural-derived flavonoids, including flavonoid glycosides with antibacterial potential to provide novel antibacterial lead hits/candidates, covering articles published between January 2016 and July 2021.
Collapse
Affiliation(s)
- Zhenyou Tan
- Guangdong Xianqiang Pharmaceutical Co., Ltd, Guangzhou, P. R. China
| | - Jun Deng
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Qiongxian Ye
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Zhenfeng Zhang
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| |
Collapse
|
6
|
Deshmukh SK, Dufossé L, Chhipa H, Saxena S, Mahajan GB, Gupta MK. Fungal Endophytes: A Potential Source of Antibacterial Compounds. J Fungi (Basel) 2022; 8:164. [PMID: 35205918 PMCID: PMC8877021 DOI: 10.3390/jof8020164] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, Delhi, India
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, 97744 Saint-Denis, France
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Sanjai Saxena
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | | | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
7
|
Eleftheriou C, Zacharia LC. Ginkgo biloba L. flavonoids inhibit CYP 2A5; potential dietary supplement for nicotine replacement therapy enhancement. Nat Prod Res 2021; 36:4210-4214. [PMID: 34498955 DOI: 10.1080/14786419.2021.1972419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Smoking is a public health concern, and even though smoking cessation methods exist, nicotine replacement therapy (NRT) is often ineffective. Smoking behavior is related to the nicotine metabolizing enzyme (NME) P450 2A6 (mouse 2A5) polymorphisms. Accordingly, fast metabolizers are nicotine dependent, and have low quitting rates compared to slow metabolizers. In this study we examined the ability of Ginkgo biloba L (GB) and its constituents to inhibit the NME, using mouse liver microsomes containing the 2A5 enzyme. Our results indicate that GB can inhibit 2A5 (25% inhibition at 5%v/v), with the flavonoids quercetin, isorhamnetin, and kaempferol being responsible for this inhibition (23.5%, 10.7%, 25.2% inhibition at 60 ng/μL, respectively). Importantly, the flavonoids inhibited 2A5 via mechanism based inhibition (for quercetin 30 ng/μl inhibition increased from 20.8% to 26.9% within 15 minutes). Our results suggest that GB if consumed on a regular basis can help NRT enhancement particularly in fast nicotine metabolizers.
Collapse
Affiliation(s)
- Constantina Eleftheriou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Lefteris C Zacharia
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
8
|
Vig R, Bhadra F, Gupta SK, Sairam K, Vasundhara M. Neuroprotective effects of quercetin produced by an endophytic fungus Nigrospora oryzae isolated from Tinospora cordifolia. J Appl Microbiol 2021; 132:365-380. [PMID: 34091993 DOI: 10.1111/jam.15174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
AIMS Alzheimer's disease is considered one of the most prevalent neurodegenerative disorders and dementia is the core symptom of this disease. This study was aimed to test the bioactive compounds produced by endophytic fungus for the inhibition of acetylcholinesterase (AChE) activity and to identify the compound responsible for this activity. METHODS AND RESULTS Endophytic fungi were isolated from the medicinal plant Tinospora cordifolia and screened for AChE inhibition and antioxidant activity. The extract of one of the isolates Nigrospora oryzae (GL15) showed maximum AChE inhibition as well as antioxidant activity. The compound responsible for AChE inhibition (fraction 3) was identified as quercetin based on UV, FTIR spectra, HPLC and ESI-MS analyses. Furthermore, the identification of quercetin in the extract of fraction 3 was confirmed by 1 H NMR analysis. This extract showed anti-dementia-like activity in scopolamine (SCO) model. The minimal effective dose of the extract of fraction 3 modulated the SCO-provoked cognitive deficits such as impairments in spatial recognition memory and latency period in Y-maze test and passive avoidance test, respectively. The SCO-induced modulation in cholinergic pathway was ameliorated by the extract of N. oryzae in hippocampus, resulting in decrease in AChE activity and restoration of cytoarchitecture of hippocampus. CONCLUSIONS The bioactive compound quercetin produced by N. oryzae may cure the learning and memory shortfalls via AChE-mediated mechanism in experimental mice. SIGNIFICANCE AND IMPACT OF THE STUDY The endophytic fungus N. oryzae serves as a potential source for the bioactive compound quercetin, which plays an important role in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Rajat Vig
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Fatima Bhadra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Krishnamurthy Sairam
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
9
|
Naturally Occurring Flavonoids and Isoflavonoids and Their Microbial Transformation: A Review. Molecules 2020; 25:molecules25215112. [PMID: 33153224 PMCID: PMC7663748 DOI: 10.3390/molecules25215112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Flavonoids and isoflavonoids are polyphenolic secondary metabolites usually produced by plants adapting to changing ecological environments over a long period of time. Therefore, their biosynthesis pathways are considered as the most distinctive natural product pathway in plants. Seemingly, the flavonoids and isoflavones from fungi and actinomycetes have been relatively overlooked. In this review, we summarized and classified the isoflavones and flavonoids derived from fungi and actinomycetes and described their biological activities. Increasing attention has been paid to bioactive substances derived from microorganism whole-cell biotransformation. Additionally, we described the utilization of isoflavones and flavonoids as substrates by fungi and actinomycetes for biotransformation through hydroxylation, methylation, halogenation, glycosylation, dehydrogenation, cyclisation, and hydrogenation reactions to obtain rare and highly active biofunctional derivatives. Overall, among all microorganisms, actinomycetes are the main producers of flavonoids. In our review, we also summarized the functional genes involved in flavonoid biosynthesis.
Collapse
|