1
|
Zhang ZY, Li Y, Yu JH, Zhao JX, Yue JM. Lauinoids A-X: Labdane-type diterpenoids with anti-inflammatory activity from Croton laui. PHYTOCHEMISTRY 2024; 223:114138. [PMID: 38762154 DOI: 10.1016/j.phytochem.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Croton laui (Euphorbiaceae) is a traditional medicinal plant used by the Li ethnic group in China to treat headaches, stomachaches, and diphtheria. To understand the pharmacological basis of its medicinal use, an extensive investigation of the ethanolic extract of the bark of C. laui was performed. After repeated chromatography, twenty-four undescribed labdane-type diterpenoids, lauinoids A-X (1-24), and five known analogs (25-29) were isolated. Their structures and absolute configurations were established using a combination of spectroscopic analyses, electronic circular dichroism, nuclear magnetic resonance calculations, and single-crystal X-ray diffraction. Among them, compounds 1-3 exhibited an 11(12 → 13)-abeo-16-nor-labdane skeleton, which originated putatively from 9 through a plausible pathway that involves a semipinacol rearrangement process. Compounds 11 and 12 belong to the rare class of 14,15-dinor-labdane diterpenoids. Compounds 18 and 28 exhibited substantial inhibitory effects by suppressing lipopolysaccharide-induced NO production in RAW 264.7 macrophages, with IC50 values of 3.37 ± 0.23 and 5.82 ± 0.28 μM, respectively. This study has greatly expanded the chemical diversity of labdane diterpenoids from C. laui and will guide future research on this ethnomedicinal plant.
Collapse
Affiliation(s)
- Zong-Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, People's Republic of China
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, People's Republic of China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, People's Republic of China.
| |
Collapse
|
2
|
Limtragool OA, Pitchuanchom S, Boonyarat C, Kanokmedhakul K, Kanokmedhakul S. Bioactive cholinesterase inhibitions of clerodanes from the flowers of Croton krabas and molecular docking studies. Nat Prod Res 2024:1-10. [PMID: 38501726 DOI: 10.1080/14786419.2024.2330513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The first investigation of the phytochemical profile of the flowers of Croton krabas led to the isolation of two new clerodane diterpenes, 6S-crotocaudin (1) and crotocaudin B (2), together with two known clerodanes, 6S-crotoeurin C (3) and isoteucvin (4). The structures and absolute configurations of isolated clerodanes were elucidated by extensive analysis of NMR spectroscopic data, mass spectrometry and ECD calculations. Compounds 1-4 demonstrated significant inhibitory activity towards acetylcholinesterase (AChE). Notably, compound 2 exhibited the strongest AChE inhibition (IC50 1.01 µM). Compounds 3 and 4 showed potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 1.09 and 1.12 µM, respectively. The molecular docking results revealed that 2 bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE, while 3 occupied in the CAS of BChE.
Collapse
Affiliation(s)
- Oue-Artorn Limtragool
- Department of Chemistry, Multidisciplinary Research Unit of Pure and Applied Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Siripit Pitchuanchom
- Department of Chemistry, Multidisciplinary Research Unit of Pure and Applied Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Department of Chemistry, Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Department of Chemistry, Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Linphosan C, Uk-At S, Setsuwan P, Srisupattanakul P, Boonyarat C, Poopasit K, Limtragool OA. A New Clerodane from the Leaves of Croton krabas and Its Cholinesterase Inhibitory Activities. Chem Biodivers 2023; 20:e202301309. [PMID: 37926685 DOI: 10.1002/cbdv.202301309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Chromatographic separation of the leaves of Croton krabas resulted in the isolation of one new clerodane, crotoeurin D (1), along with two known compounds, 6S-crotoeurin C (2) and blumenol A (3). Their structures were determined based on extensive nuclear magnetic resonance spectroscopic data analysis and mass spectrometry. The absolute configuration of the new clerodane was assigned by nuclear overhauser effect spectroscopy correlations and electronic circular dichroism calculations. Compound 1 exhibited significant acetylcholinesterase and butyrylcholinesterase inhibitory activities. Moreover, the binding modes of 1 revealed that its structure formed strong hydrogen bonds and hydrophobic interactions with the active sites of both enzymes.
Collapse
Affiliation(s)
- Chaiwat Linphosan
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Sunita Uk-At
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Phiraphon Setsuwan
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Pattanasak Srisupattanakul
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kitisak Poopasit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Oue-Artorn Limtragool
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham
| |
Collapse
|
4
|
Martínez-Casares RM, Hernández-Vázquez L, Mandujano A, Sánchez-Pérez L, Pérez-Gutiérrez S, Pérez-Ramos J. Anti-Inflammatory and Cytotoxic Activities of Clerodane-Type Diterpenes. Molecules 2023; 28:4744. [PMID: 37375299 DOI: 10.3390/molecules28124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The secondary metabolites of clerodane diterpenoids have been found in several plant species from various families and in other organisms. In this review, we included articles on clerodanes and neo-clerodanes with cytotoxic or anti-inflammatory activity from 2015 to February 2023. A search was conducted in the following databases: PubMed, Google Scholar and Science Direct, using the keywords clerodanes or neo-clerodanes with cytotoxicity or anti-inflammatory activity. In this work, we present studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belonging to 9 families. These plants are mostly from the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. In summary, clerodane diterpenes have activity against different cell cancer lines. Specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some of which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. Furthermore, some diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way.
Collapse
Affiliation(s)
- Rubria Marlen Martínez-Casares
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Liliana Hernández-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Angelica Mandujano
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Leonor Sánchez-Pérez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Salud Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| | - Julia Pérez-Ramos
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán 04960, CDMX, Mexico
| |
Collapse
|
5
|
Jiang ZY, Liu CJ, Niu Q, Yan XY, Xiao D, Zhang HL, Huang CQ, Shi SL, Zuo AX, He HP. In Vitro Hypoglycemic Diterpenoids from the Roots of Croton yunnanensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:199-208. [PMID: 36635870 DOI: 10.1021/acs.jnatprod.2c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fifteen compounds including nine new diterpenes were isolated from the roots of Croton yunnanensis. By HRESIMS, NMR, ECD data, and X-ray diffraction analysis, the new compounds were characterized as eight neo-clerodane diterpenes (compounds 1-8) and one 15,16-dinor-ent-pimarane diterpene (9). All diterpenes were assayed for their hypoglycemic activities. Compounds 1-4, 6, 7, and 10 promoted glucose uptake activity in insulin-resistant 3T3-L1 adipocytes. Compounds 1 and 6 showed insulin sensitizing activity, potentiating conspicuously their glucose uptake activity at a concentration of 20 μM when treated synergistically with low-concentration insulin at 1 nM.
Collapse
Affiliation(s)
- Zhi-Yong Jiang
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
- Key Laboratory of Modern Research on Ethnic Medicine in Colleges of Yunnan Province, Kunming 650500, Yunnan, People's Republic of China
| | - Chun-Jiang Liu
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Qi Niu
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Xin-Yu Yan
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Die Xiao
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Hong-Lei Zhang
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Chun-Qiu Huang
- Yunnan Phytopharmaceutical Co. Ltd., Kunming 650505, Yunnan, People's Republic of China
| | - Sheng-Li Shi
- College of Chemical Biology & Enviromeny, Yuxi Normal University, Yuxi 653100, Yunnan, People's Republic of China
| | - Ai-Xue Zuo
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
| | - Hong-Ping He
- School of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, People's Republic of China
- Key Laboratory of Modern Research on Ethnic Medicine in Colleges of Yunnan Province, Kunming 650500, Yunnan, People's Republic of China
| |
Collapse
|
6
|
Ling ZP, Tang Q, Li CJ, Tan JL, Zhao HY, Hao YK, Zhan ZC, Wu ZN, Zhang YB, Zheng Q, Wang GC. Two new clerodane diterpenoids and a new pyran-2-one derivative with anti-neuroinflammatory activities from Croton crassifolius. J Nat Med 2022; 76:849-856. [PMID: 35639239 DOI: 10.1007/s11418-022-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Two new clerodane diterpenoids (1 and 2), a new pyran-2-one derivative (3), along with five known compounds (4‒8), were isolated from Croton crassifolius. Notably, crassifolin X (1) is a novel clerodane diterpenoid, characterized with a peculiar δ-lactone core being formed between C-1 and C-4. Their structures, including absolute configurations, were established on the basis of spectroscopic methods (UV, IR, HRESIMS and NMR), and circular dichroism experiments. In addition, all compounds were evaluated for their anti-neuroinflammatory activities based on the expression of TNF-α and IL-6 levels on LPS-induced BV2 cells, and compounds 1‒3 and 5 showed potential anti-neuroinflammatory activity.
Collapse
Affiliation(s)
- Zhi-Peng Ling
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qing Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Can-Jie Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jin-Lin Tan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Yue Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yi-Kun Hao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhao-Chun Zhan
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhong-Nan Wu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qing Zheng
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
7
|
Li C, Sun X, Yin W, Zhan Z, Tang Q, Wang W, Zhuo X, Wu Z, Zhang H, Li Y, Zhang Y, Wang G. Crassifolins Q-W: Clerodane Diterpenoids From Croton crassifolius With Anti-Inflammatory and Anti-Angiogenesis Activities. Front Chem 2021; 9:733350. [PMID: 34616713 PMCID: PMC8488372 DOI: 10.3389/fchem.2021.733350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Seven new clerodane diterpenoids, crassifolins Q-W (1-7), along with five known analogues (8-12), were isolated from the roots of Croton crassifolius. Their structures were identified by comprehensive spectroscopic analysis (UV, IR, NMR, and HR-ESI-MS), and their absolute configurations were determined by ECD spectra and X-ray crystallography. The activities of compounds 1-5 against inflammatory cytokines IL-6 and TNF-α levels on LPS-induced RAW 264.7 macrophages were assessed, and compound 5 showed the most significant activity with the secretion levels of IL-6 and TNF-α at 32.78 and 12.53%, respectively. Moreover, compounds 1-5 were screened for their anti-angiogenesis using a human umbilical vein endothelial cells in vitro mode; the results showed all of them exhibited obvious anti-angiogenesis activities, in particular, compound 5 showed the strongest anti-angiogenesis effect in the range of 6.25-50 μM.
Collapse
Affiliation(s)
- Canjie Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Yin
- Department of Pharmacology, School of Medicine, Guangdong Clinical Translational Center for Targeted Drug, Jinan University, Guangzhou, China
| | - Zhaochun Zhan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qing Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhi Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuefang Zhuo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhongnan Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Guangdong Clinical Translational Center for Targeted Drug, Jinan University, Guangzhou, China
| | - Yaolan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yubo Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.,Department of Pharmacology, School of Medicine, Guangdong Clinical Translational Center for Targeted Drug, Jinan University, Guangzhou, China
| | - Guocai Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Feng Z, Cao J, Zhang Q, Lin L. The drug likeness analysis of anti-inflammatory clerodane diterpenoids. Chin Med 2020; 15:126. [PMID: 33298100 PMCID: PMC7727157 DOI: 10.1186/s13020-020-00407-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an active defense response of the body against external stimuli. Long term low-grade inflammation has been considered as a deteriorated factor for aging, cancer, neurodegeneration and metabolic disorders. The clinically used glucocorticoids and non-steroidal anti-inflammatory drugs are not suitable for chronic inflammation. Therefore, it's urgent to discover and develop new effective and safe drugs to attenuate inflammation. Clerodane diterpenoids, a class of bicyclic diterpenoids, are widely distributed in plants of the Labiatae, Euphorbiaceae and Verbenaceae families, as well as fungi, bacteria, and marine sponges. Dozens of anti-inflammatory clerodane diterpenoids have been identified on different assays, both in vitro and in vivo. In the current review, the up-to-date research progresses of anti-inflammatory clerodane diterpenoids were summarized, and their druglikeness was analyzed, which provided the possibility for further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, People's Republic of China
| | - Jun Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, People's Republic of China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, People's Republic of China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, People's Republic of China.
| |
Collapse
|