1
|
Satta G, Trajkovski M, Cantara A, Mura M, Meloni C, Olla G, Dobrovolná M, Pisano L, Gaspa S, Salis A, De Luca L, Mocci F, Brazda V, Plavec J, Carraro M. Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back. Chemistry 2024; 30:e202402600. [PMID: 39291646 PMCID: PMC11632414 DOI: 10.1002/chem.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4 s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. This study enabled the synthesis of tetracationic porphyrin derivatives that exhibited binding and stabilizing capacity against G-quadruplex structures; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4 s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl) porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.
Collapse
Affiliation(s)
- Giuseppe Satta
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryLjubljanaSI-1000Slovenia
| | - Alessio Cantara
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Monica Mura
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Claudia Meloni
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Giulia Olla
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Michaela Dobrovolná
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Luisa Pisano
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| | - Silvia Gaspa
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
| | - Andrea Salis
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Lidia De Luca
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
| | - Francesca Mocci
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Vaclav Brazda
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryLjubljanaSI-1000Slovenia
- EN→FIST Centre of ExcellenceTrg OF 13SI-1000LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVecna pot 113SI-1000LjubljanaSlovenia
| | - Massimo Carraro
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| |
Collapse
|
2
|
Alhilal M, Erol HS, Yildirim S, Cakir A, Koc M, Alhilal S, Dereli E, Alkanoglu O, Ay V, Can I, Halici MB. Medicinal evaluation and molecular docking study of osajin as an anti-inflammatory, antioxidant, and antiapoptotic agent against sepsis-associated acute kidney injury in rats. Ren Fail 2024; 46:2379008. [PMID: 39034431 PMCID: PMC11262233 DOI: 10.1080/0886022x.2024.2379008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024] Open
Abstract
Despite efforts to find effective drugs for sepsis-associated acute kidney injury (SA-AKI), mortality rates in patients with SA-AKI have not decreased. Our study evaluated the protective effects of isoflavone osajin (OSJ) on SA-AKI in rats by targeting inflammation, oxidative stress, and apoptosis, which represent the cornerstones in the pathophysiological mechanism of SA-AKI. Polymicrobial sepsis was induced in rats via the cecal ligation and puncture (CLP) technique. Markers of oxidative stress were evaluated in kidney tissues using biochemical methods. The expression of interleukin-33 (IL-33), 8-hydroxydeoxyguanosine (8-OHdG), caspase-3, and kidney injury molecule-1 (KIM-1) was evaluated as indicators of inflammation, DNA damage, apoptosis, and SA-AKI respectively in the kidney tissues using immunohistochemical and immunofluorescent detection methods. The CLP technique significantly (p < 0.001) increased lipid peroxidation (LPO) levels and significantly (p < 0.001) decreased the activities of superoxide dismutase and catalase in kidney tissues. In the renal tissues, strong expression of IL-33, 8-OHdG, caspase-3, and KIM-1 was observed with severe degeneration and necrosis in the tubular epithelium and intense interstitial nephritis. In contrast, the administration of OSJ significantly (p < 0.001) reduced the level of LPO, markedly improved biomarkers of antioxidant status, decreased the levels of serum creatinine and urea, lowered the expression of IL-33, 8-OHdG, caspase-3, and KIM-1 and alleviated changes in renal histopathology. A promising binding score was found via a molecular docking investigation of the OSJ-binding mode with mouse IL-33 (PDB Code: 5VI4). Therefore, OSJ protects against SA-AKI by suppressing the IL-33/LPO/8-OHdG/caspase-3 pathway and improving the antioxidant system.
Collapse
Affiliation(s)
- Mohammad Alhilal
- Department of Nursing, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science, Kilis 7 Aralık University, Kilis, Turkey
| | - Murat Koc
- Department of Tradational, Complementary and Integrative Medicine, Public Health Institute, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Suzan Alhilal
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Esra Dereli
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Omer Alkanoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Volkan Ay
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Can
- Department of Histology-Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
- HALICI Life Care LLC. Atatruk University, ATA-TECHNOCITY, Erzurum, Turkiye
| | - Mesut Bunyami Halici
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
- HALICI Life Care LLC. Atatruk University, ATA-TECHNOCITY, Erzurum, Turkiye
| |
Collapse
|
3
|
Gajić I, Dinić A, Stanojević L, Zvezdanović J, Nikolić V, Urošević M, Nikolić L, Savić V. Osage orange ( Maclura pomifera (Raf.) Schneid) fruit extracts: UHPLC-DAD-ESI-MS/MS analysis, antioxidant activity and in vivo skin tests. Nat Prod Res 2024; 38:3080-3085. [PMID: 37154676 DOI: 10.1080/14786419.2023.2208361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
This work aimed to evaluate chemical profile, antioxidant activity and topical application safety of the raw Osage orange (Maclura pomifera (Raf.) Schneid) fruit extracts obtained by maceration using ethanol and acetone. Out of eighteen different compounds registered in the extracts, fifteen were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry. Pomiferin and osajin were characteristic and representative compounds in both ethanolic and acetone extracts of the Osage orange fruit. Both extracts showed good antioxidant activity (EC50 = 0.03 mg/cm3) after 20 min of incubation. The topical administration safety of the extracts was evaluated in vivo by measuring skin biophysical parameters: electrical capacitance and erythema index, as indicators of stratum corneum hydration and irritation, respectively. Based on the results of the in vivo skin tests, it can be concluded that both of the Osage orange fruit extracts are safe for topical administration - they increased skin hydration and reduced skin irritation under the occlusion.
Collapse
Affiliation(s)
- Ivana Gajić
- Faculty of Technology, University of Niš, Leskovac, Serbia
| | - Ana Dinić
- Faculty of Technology, University of Niš, Leskovac, Serbia
| | | | | | - Vesna Nikolić
- Faculty of Technology, University of Niš, Leskovac, Serbia
| | - Maja Urošević
- Faculty of Technology, University of Niš, Leskovac, Serbia
| | | | - Vesna Savić
- Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
4
|
Stężycka O, Kasperkowiak M, Frańska M, Nowak D, Hoffmann M. Oxygen Atom from Carbonyl Group as an Important Binding Agent to the G-Quadruplex - Study Case of Flavonoids. Chempluschem 2024; 89:e202400186. [PMID: 38713672 DOI: 10.1002/cplu.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
In the field of anticancer therapy study it is of great interest to find effective G-quadruplex ligands which may be of potential use in medical treatment or cancer prevention. Since among the compounds of natural origin, flavonoids have attracted notable attention because of their unique properties and promising therapeutic applications, an interesting question was to identify the flavonoid structural features that could provide effective binding properties toward G-quadruplex. By using electrospray ionization mass spectrometry, followed by the survival yield method, it has been shown that the flavonoid molecules which contain an available C4=O carbonyl group form more stable adducts with G-tetrads than the other ones. Molecular docking has shown that C4=O carbonyl group can be a source of hydrogen bonds and/or π-stacking interactions. Therefore, the flavonoid molecules which contain an available C4=O carbonyl group can be regarded as good binders of G-quadruplexes.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Damian Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
6
|
Stężycka O, Frańska M, Beszterda-Buszczak M. Exploring Glycosylated Soy Isoflavones Affinities toward G-tetrads as Studied by Survival Yield Method. Chemphyschem 2023; 24:e202300056. [PMID: 36861944 DOI: 10.1002/cphc.202300056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Taking soy-based food supplements for menopausal symptoms by women may reduce the risk of cancer. Therefore, the interaction between nucleic acids (or their constituents) and ingredients of the supplements, e. g., isoflavone glucosides, on the molecular level, has been of interest with respect to cancer therapy. In this work, the interaction between isoflavone glucosides and G-tetrads, namely [4G+Na]+ ions (G stands for guanosine or deoxyguanosine), were analyzed by using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS) and survival yields method. The strength of isoflavone glucosides-[4G+Na]+ interaction in the gas phase was determined from Ecom50 - the energy required to fragment 50 % of selected precursor ions. Glycitin-[4G+Na]+ interaction was found to be the strongest, and the interaction between isoflavone glucosides and guanosine tetrad was established to be stronger than that between isoflavone glucosides and deoxyguanosine tetrad.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Monika Beszterda-Buszczak
- Poznań University of Life Sciences, Department of Food Biochemistry and Analysis, Mazowiecka 48, 60-623, Poznań, Poland
| |
Collapse
|
7
|
Bag S, Burman MD, Bhowmik S. Structural insights and shedding light on preferential interactions of dietary flavonoids with G-quadruplex DNA structures: A new horizon. Heliyon 2023; 9:e13959. [PMID: 36879969 PMCID: PMC9984854 DOI: 10.1016/j.heliyon.2023.e13959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| |
Collapse
|
8
|
An Updated Overview on the Role of Small Molecules and Natural Compounds in the "Young Science" of Rejuvenation. Antioxidants (Basel) 2023; 12:antiox12020288. [PMID: 36829846 PMCID: PMC9951981 DOI: 10.3390/antiox12020288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Aging is a gradual process that occurs over time which leads to a progressive decline of cells and tissues. Telomere shortening, genetic instability, epigenetic alteration, and the accumulation of misfolded proteins represent the main hallmarks that cause perturbed cellular functions; this occurs in conjunction with the progression of the so-called "aging clocks". Rejuvenation aims to influence the natural evolution of such aging clocks and to enhance regenerative capacity, thus overcoming the limitations of common anti-aging interventions. Current rejuvenation processes are based on heterochronic parabiosis, cell damage dilution through asymmetrical cell division, the excretion of extracellular vesicles, the modulation of genetic instability involving G-quadruplexes and DNA methylation, and cell reprogramming using Yamanaka factors and the actions of antioxidant species. In this context, we reviewed the most recent contributions that report on small molecules acting as senotherapeutics; these molecules act by promoting one or more of the abovementioned processes. Candidate drugs and natural compounds that are being studied as potential rejuvenation therapies act by interfering with CDGSH iron-sulfur domain 2 (CISD2) expression, G-quadruplex structures, DNA methylation, and mitochondrial decay. Moreover, direct and indirect antioxidants have been reported to counteract or revert aging through a combination of mixed mechanisms.
Collapse
|
9
|
Ongaro A, Desiderati G, Oselladore E, Auricchio D, Memo M, Ribaudo G, Sissi C, Gianoncelli A. Amino-Acid-Anthraquinone Click Chemistry Conjugates Selectively Target Human Telomeric G-Quadruplexes. ChemMedChem 2021; 17:e202100665. [PMID: 34882992 DOI: 10.1002/cmdc.202100665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Indexed: 11/06/2022]
Abstract
Guanine-rich sequences are known to fold into G-quadruplex (G4) arrangements, which are present in oncogenes and in the telomeric regions of chromosomes. In particular, G4s represent an obstacle to functioning of telomerase, an enzyme overexpressed in cancer cells causing their immortalization. Therefore, G4 stabilization using small molecules represents an appealing strategy for the medicinal chemist. Ligands based on an anthraquinone scaffold, to which peptidic side chains were attached by an amide bond, were previously reported. We envisioned improving this ligand concept leveraging the click chemistry approach, which, besides representing a flexible, high yielding synthetic strategy, allows an elongation of the side chains and an increase of π-π stacking and H-bond interactions with the nucleobases through the triazole ring. Compounds were tested for their ability to interact with G4 DNA with a multiple analytical approach, demonstrating an elevated aptitude to stabilize the G4 and high selectivity over double stranded DNA.
Collapse
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Desiderati
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Davide Auricchio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| |
Collapse
|
10
|
Evaluating Molecular Docking Software for Small Molecule Binding to G-Quadruplex DNA. Int J Mol Sci 2021; 22:ijms221910801. [PMID: 34639142 PMCID: PMC8509811 DOI: 10.3390/ijms221910801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.
Collapse
|
11
|
Ribaudo G, Ongaro A, Oselladore E, Memo M, Gianoncelli A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J Med Chem 2021; 64:13174-13190. [PMID: 34510895 PMCID: PMC8474113 DOI: 10.1021/acs.jmedchem.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Guanine-rich sequences
forming G-quadruplexes (GQs) are present
in several genomes, ranging from viral to human. Given their peculiar
localization, the induction of GQ formation or GQ stabilization with
small molecules represents a strategy for interfering with crucial
biological functions. Investigating the recognition event at the molecular
level, with the aim of fully understanding the triggered pharmacological
effects, is challenging. Native electrospray ionization mass spectrometry
(ESI-MS) is being optimized to study these noncovalent assemblies.
Quantitative parameters retrieved from ESI-MS studies, such as binding
affinity, the equilibrium binding constant, and sequence selectivity,
will be overviewed. Computational experiments supporting the ESI-MS
investigation and boosting its efficiency in the search for GQ ligands
will also be discussed with practical examples. The combination of
ESI-MS and in silico techniques in a hybrid high-throughput-screening
workflow represents a valuable tool for the medicinal chemist, providing
data on the quantitative and structural aspects of ligand–GQ
interactions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
12
|
Ribaudo G, Oselladore E, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Enhanced G-quadruplex selectivity of flavonoid glycoside rutin over quercetin. Nat Prod Res 2020; 36:3469-3473. [PMID: 33307807 DOI: 10.1080/14786419.2020.1859505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In drug discovery, ligand-mediated stabilization of G-quadruplexes is pursued for regulating gene expression and key cellular processes. Electrospray ionization mass spectrometry (ESI-MS) has been optimized for screening putative DNA-binding small molecules of natural and synthetic origin. Several flavonoids were reported to interact with G-quadruplex, and quercetin is among them. In this contribution, the interaction with G-quadruplex DNA of rutin, a glycoside of quercetin extracted from flower buds of Styphnolobium japonicum (L.) Schott, was investigated by means of ESI-MS and molecular docking. While rutin and quercetin showed similar G-quadruplex binding affinity values, rutin was characterized by enhanced selectivity for G-quadruplex over double stranded DNA. Moreover, collision-induced dissociation (CID) assays demonstrated that rutin stabilizes the G-quadruplex arrangement more efficiently, and molecular docking predicted stacking as the preferential interaction pattern.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Erika Oselladore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Eboji OK, Borges G, Harrington L, Lin W, Sofidiya MO, Sowemimo AA. Catechin from Burkea africana Hook. Exhibits in vitro inhibition of human telomerase activity. Nat Prod Res 2020; 35:6175-6179. [PMID: 33930985 DOI: 10.1080/14786419.2020.1831497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There has been an increasing interest in natural products with the ability to inhibit telomerase activity in tumour and cancerous cells. Green tea catechins have been reported previously to inhibit telomerase, but it was unknown whether catechins from other plant sources could exhibit this property. We isolated 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (catechin without the presence of a galloyl unit) from the stem bark of B. africana, and tested its ability to inhibit recombinant, partially purified telomerase produced in rabbit reticulocyte lysates. The B. africana catechin inhibited the telomere extension activity of telomerase with an IC50 of approximately 4.7 µg/ml. This finding indicates that the galloyl unit may not be solely responsible for the inhibition of telomerase activity by catechins. This is the first report of the telomerase-inhibiting potential of catechin from the stem bark of B. africana.
Collapse
Affiliation(s)
- Okwuchukwu Kodichinma Eboji
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| | - Gustavo Borges
- Institute for Research in Immunology & Cancer, Université de Montréal, Montreal, QC, Canada
| | - Lea Harrington
- Institute for Research in Immunology & Cancer, Université de Montréal, Montreal, QC, Canada
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Margaret Oluwatoyin Sofidiya
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| | - Abimbola Adepeju Sowemimo
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, College of Medicine Campus, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
14
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Photoactivated semi-synthetic derivative of osajin selectively interacts with G-quadruplex DNA. Nat Prod Res 2020; 36:405-410. [PMID: 32419493 DOI: 10.1080/14786419.2020.1768087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Ongaro A, Ribaudo G, Braud E, Ethève-Quelquejeu M, De Franco M, Garbay C, Demange L, Gresh N, Zagotto G. Design and synthesis of a peptide derivative of ametantrone targeting the major groove of the d(GGCGCC) 2palindromic sequence. NEW J CHEM 2020. [DOI: 10.1039/c9nj03817e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of a peptide derivative of antitumor anthraquinones, designed to target GC-rich palindromic sequences. It has micromolar activities on three cancer cell lines and is fifty times less toxic than mitoxantrone on a healthy line.
Collapse
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational Medicine
- Division of Pharmacology
- University of Brescia
- 25123 Brescia
- Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine
- Division of Pharmacology
- University of Brescia
- 25123 Brescia
- Italy
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques
- Team “Chemistry of RNAs, nucleosides
- peptides and heterocycles” Université de Paris
- CNRS UMR 8601
- Paris
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques
- Team “Chemistry of RNAs, nucleosides
- peptides and heterocycles” Université de Paris
- CNRS UMR 8601
- Paris
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Christiane Garbay
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques
- Team “Chemistry of RNAs, nucleosides
- peptides and heterocycles” Université de Paris
- CNRS UMR 8601
- Paris
| | - Luc Demange
- Université de Paris
- CiTCoM
- UMR 8038 CNRS
- Faculté de Pharmacie
- F-75006 Paris
| | - Nohad Gresh
- Laboratoire de Chimie Théorique
- UMR 7616 CNRS
- Sorbonne Université
- Paris
- France
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|