1
|
Zhang J, Gao L, Lin H, Liang Y, You M, Ding L, Feng F, Yang B, Liu Y. Discovery of Antibacterial Compounds against Xanthomonas citri subsp. citri from a Marine Fungus Aspergillus terreus SCSIO 41202 and the Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12596-12606. [PMID: 38771666 DOI: 10.1021/acs.jafc.4c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a severe citrus disease. Currently, copper-containing pesticides are widely used to manage this disease, posing high risks to the environment and human health. This study reports the discovery of naturally occurring anti-Xcc compounds from a deep-sea fungus, Aspergillus terreus SCSIO 41202, and the possible mode of action. The ethyl acetate extract of A. terreus was subjected to bioassay-guided isolation, resulting in the discovery of eight anti-Xcc compounds (1-8) with minimum inhibitory concentrations (MICs) ranging from 0.078 to 0.625 mg/mL. The chemical structures of these eight metabolites were determined by integrative analysis of various spectroscopic data. Among these compounds, Asperporonin A (1) and Asperporonin B (2) were identified as novel compounds with a very unusual structural skeleton. The electronic circular dichroism was used to determine the absolute configurations of 1 and 2 through quantum chemical calculation. A bioconversion pathway involving pinacol rearrangement was proposed to produce the unusual compounds (1-2). Compound 6 exhibited an excellent anti-Xcc effect with a MIC value of 0.078 mg/mL, which was significantly more potent than the positive control CuSO4 (MIC = 0.3125 mg/mL). Compound 6 inhibited cell growth by disrupting biofilm formation, destroying the cell membrane, and inducing the accumulation of reactive oxygen species. In vivo tests indicated that compound 6 is highly effective in controlling citrus canker disease. These results indicate that compounds 1-8, especially 6, have the potential as lead compounds for the development of new, environmentally friendly, and efficient anti-Xcc pesticides.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Huiting Lin
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Mingnan You
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Lijian Ding
- Department of Marine Pharmacy, Ningbo University, Ningbo 315211, China
| | - Fangjian Feng
- Department of Marine Pharmacy, Ningbo University, Ningbo 315211, China
| | - Bin Yang
- Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, P. R. China
| | - Yonghong Liu
- Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, P. R. China
| |
Collapse
|
2
|
Qi L, Du HF, Sun TT, Li L, Zhang YH, Liu YF, Cao F. Natural products from marine fungi as a source against agricultural pathogenic fungi. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12657-3. [PMID: 37401997 DOI: 10.1007/s00253-023-12657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
There are many kinds of agricultural pathogenic fungi, which may belong to pathogenic fungi in different species, such as Fusarium, Alternaria, Colletotrichum, Phytophthora, and other agricultural pathogens. Pathogenic fungi from different sources are widely distributed in agriculture, which threaten the lives of crops around the world and caused great damage to agricultural production and economic benefits. Due to the particularity of the marine environment, marine-derived fungi could produce natural compounds with unique structures, rich diversities, and significant bioactivities. Since marine natural products with different structural characteristics could inhibit different kinds of agricultural pathogenic fungi, secondary metabolites with antifungal activity could be used as lead compounds against agricultural pathogenic fungi. In order to summarize the structural characteristics of marine natural products against agricultural pathogenic fungi, this review systematically overview the activities against agricultural pathogenic fungi of 198 secondary metabolites from different marine fungal sources. A total of 92 references published from 1998 to 2022 were cited. KEY POINTS: • Pathogenic fungi, which could cause damage to agriculture, were classified. • Structurally diverse antifungal compounds from marine-derived fungi were summarized. • The sources and distributions of these bioactive metabolites were analyzed.
Collapse
Affiliation(s)
- Lu Qi
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Lei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Yun-Feng Liu
- College of Life Sciences, Baoding, 071002, China.
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China.
| |
Collapse
|
3
|
Amr K, Ibrahim N, Elissawy AM, Singab ANB. Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biol Biotechnol 2023; 10:6. [PMID: 36966331 PMCID: PMC10040139 DOI: 10.1186/s40694-023-00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/27/2023] Open
Abstract
Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biol 2022; 126:201-212. [DOI: 10.1016/j.funbio.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023]
|
5
|
Kanashiro AM, Akiyama DY, Kupper KC, Fill TP. Penicillium italicum: An Underexplored Postharvest Pathogen. Front Microbiol 2020; 11:606852. [PMID: 33343551 PMCID: PMC7746842 DOI: 10.3389/fmicb.2020.606852] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
In the agricultural sector, citrus is one of the most important fruit genus in the world. In this scenario, Brazil is the largest producer of oranges; 34% of the global production, and exporter of concentrated orange juice; 76% of the juice consumed in the planet, summing up US$ 6.5 billion to Brazilian GDP. However, the orange production has been considerable decreasing due to unfavorable weather conditions in recent years and the increasing number of pathogen infections. One of the main citrus post-harvest phytopathogen is Penicillium italicum, responsible for the blue mold disease, which is currently controlled by pesticides, such as Imazalil, Pyrimethanil, Fludioxonil, and Tiabendazole, which are toxic chemicals harmful to the environment and also to human health. In addition, P. italicum has developed considerable resistance to these chemicals as a result of widespread applications. To address this growing problem, the search for new control methods of citrus post-harvest phytopathogens is being extensively explored, resulting in promising new approaches such as biocontrol methods as “killer” yeasts, application of essential oils, and antimicrobial volatile substances. The alternative methodologies to control P. italicum are reviewed here, as well as the fungal virulence factors and infection strategies. Therefore, this review will focus on a general overview of recent research carried out regarding the phytopathological interaction of P. italicum and its citrus host.
Collapse
Affiliation(s)
| | | | - Katia Cristina Kupper
- Advanced Citrus Research Center, Sylvio Moreira/Campinas Agronomic Institute, São Paulo, Brazil
| | | |
Collapse
|