1
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Tran XT, Bien TTL, Tran TV, Nguyen TTT. Biosynthesis of ZnO nanoparticles using aqueous extracts of Eclipta prostrata and Piper longum: characterization and assessment of their antioxidant, antibacterial, and photocatalytic properties. NANOSCALE ADVANCES 2024; 6:4885-4899. [PMID: 39323417 PMCID: PMC11421532 DOI: 10.1039/d4na00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024]
Abstract
Chemical syntheses of nanoparticles that release toxic substances into the environment rarely meet the strict requirements of green chemistry principles. Instead, green synthesis of nanoparticles using plant extracts brings a safe, rapid, and effective process, contributing to solving environmental pollution problems. Here, we report the green synthesis of multifunctional ZnO nanoparticles (ZnONPs) using aqueous extracts of E. prostrata leaves and P. longum fruits. The XRD results affirmed the existence of hexagonal crystalline ZnONPs with particle sizes of 17-30 nm. The optical analysis revealed bandgap energies of 3.10 eV and 3.16 eV for ZnONPs biosynthesized using E. prostrata and P. longum extracts, respectively. The synthesized ZnONPs showed potential antioxidant activity through DPPH and ABTS methods. Among the antibacterial outcomes against pathogenic bacterial strains (S. aureus, B. cereus, E. coli, and S. typhimurium), ZnONPs exhibited the highest zone of inhibition (18.5 mm) for S. aureus. Moreover, both ZnONPs biosynthesized using E. prostrata and P. longum extracts served as strong photocatalysts in the degradation of crystal violet with degradation efficiencies of 95.64% and 99.90%, respectively. Therefore, biosynthesized ZnONPs hold significant promise as antioxidants, antibacterial agents, and photocatalysts.
Collapse
Affiliation(s)
- Xuan Thanh Tran
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | | | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | | |
Collapse
|
3
|
Ugusman A, Ismail SM, Nor Hisam NS, Hui CK, Saleh MSM, Abdul Karim AK, Othman NS, Hamid AA, Aminuddin A. Piper sarmentosum Roxb. Inhibits Angiotensin-Converting Enzyme Activity in Phorbol 12-Myristate-13-Acetate-Induced Endothelial Cells. Int J Mol Sci 2024; 25:2806. [PMID: 38474055 DOI: 10.3390/ijms25052806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 μM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Siti Marjiana Ismail
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohammed S M Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Noguchi K, Teramura M, Kitagawa A, Ejima M, Ueda C, Kanae H. Relaxant Effects of Piperine and Piperlongumine from Piper longum Fruits on Porcine Coronary Artery. Biol Pharm Bull 2024; 47:130-137. [PMID: 37989300 DOI: 10.1248/bpb.b23-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Since ancient times, Piper longum Linn. fruits have been recognized for exhibiting various effects, including the diaphoretic effects linked to enhanced blood flow. Piperine and piperlongumine coexist in Piper longum Linn. fruits, although the cardiovascular effects of both compounds remain elusive. We investigated their action of piperine and piperlongumine in porcine coronary arteries, comparing them to the Ca2+ channel antagonist diltiazem. Piperlongumine, unlike piperine or diltiazem, concentration-dependently inhibited basal contractile tone in endothelium-denuded coronary arteries. All three compounds inhibit tonic contractions induced by high potassium chloride (KCl) concentrations. The order of relaxation potency indexed by the half-maximal effective concentration (EC50) were as follows: diltiazem > piperlongumine > piperine. These effects were not different between endothelium-intact and -denuded preparations. In endothelial-denuded preparations, pretreatment with these compounds not only inhibited KCl-induced tonic contractions attenuated calcium chloride (CaCl2)-induced ones in a Ca2+-free medium. Histamine-induced phasic contractions in a Ca2+-free medium containing intracellular Ca2+ chelator was completely suppressed by selective inositol trisphosphate receptor antagonist and piperlongumine, whereas piperine or diltiazem do not have the same effect. These findings suggest that piperine and piperlongumine similar to diltiazem cause vasorelaxation by inhibiting both KCl- and CaCl2-induced contractions in coronary arteries, possibly through the inhibition of voltage-dependent Ca2+ channels. Piperlongumine inhibits histamine-induced contractions in a Ca2+-free medium, which is associated with the intracellular Ca2+ signaling pathway, suggesting that the relaxant effect of piperlongumine differs from that of piperine.
Collapse
Affiliation(s)
- Kazuo Noguchi
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Moka Teramura
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Ayano Kitagawa
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Miyuki Ejima
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Chinami Ueda
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Haruna Kanae
- Laboratory of Functional Food Sciences, Department of Health and Bio-Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
6
|
Woon CK, Ahmad FB, Zamakshshari NH. Chemical Constituents and Biological Activities of Piper as Anticancer Agents: A Review. Chem Biodivers 2023; 20:e202300166. [PMID: 37515318 DOI: 10.1002/cbdv.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Cancer has become the primary cause of death worldwide, and anticancer drugs are used to combat this disease. Synthesis of anticancer drugs has limited success due to adverse side effects has made compounds from natural products with minimal toxicity gain much popularity. Piper species are known to have a biological effect on human health. The biological activity is due to Piper species rich with active secondary metabolites that can combat most diseases, including cancer. This review will discuss the phytochemistry of Piper species and their anticancer activity. The identification and characterization of ten active metabolites isolated from Piper species were discussed in detail and their anticancer mechanism. These metabolites were mainly found could inhibit anticancer through caspase and P38/JNK pathways. The findings discussed in this review support the therapeutic potential of Piper species against cancer due to their rich source of active metabolites with demonstrated anticancer activity.
Collapse
Affiliation(s)
- Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi Mara, Malaysia
| | | | - Nor Hisam Zamakshshari
- Chemistry Department, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Malaysia
| |
Collapse
|
7
|
Huyen LT, Thu Hau NT, Kiem PV. Piperlongosides A–C, Three New Phenolic Constituents From Piper longum L. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221150367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phytochemical study on the methanolic extract of the aerial parts of this plant led to the isolation of 7 phenolic compounds (1-7), including 3 new ones (1-3). Their chemical structures were determined to be (7,8- threo)-1 -O-β-D-[6′ -O-syringoylglucopyranosyl]-2-methoxy-7,8,9-trihydroxyphenylpropane (1), (7,8- threo)-8 -O-(2′′-methoxyacetophenone-1′′-yl)-1 -O-β-D-glucopyranosyl-2-methoxy-7,9-dihydroxyphenylpropane (2), 1 -O-β-D-glucopyranosyl-2 -O-(2′′-methoxy-4′′-acetylphenyl)-3-hydroxypropane (3), (−)-isolariciresinol 4 -O-β-D-glucopyranoside (4), (−)-isolarisiresinol 9′ -O-β-D-glucopyranoside (5), (+ )-lyoniresinol 9′ -O-β-D-glucopyranoside (6), (+ )-isolarisiresinol 9′ -O-β-D-glucopyranoside (7) by the spectroscopic data and in comparison with those reported in the literature. Compounds 3 to 7 significantly inhibited NO production in LPS-activated RAW264.7 cells with IC50 values ranging from 32.09 ± 3.34 to 38.16 ± 1.35 µM, similar to those of the positive control, NG-monomethyl-L-arginine acetate (IC50 32.51 ± 3.70 µM).
Collapse
Affiliation(s)
- Le Thi Huyen
- Faculty of Chemistry, VNU University of Sciences, Vietnam National University, Hanoi, Hanoi, Vietnam
| | - Nguyen Thi Thu Hau
- Faculty of Chemistry, VNU University of Sciences, Vietnam National University, Hanoi, Hanoi, Vietnam
| | - Phan Van Kiem
- Department of Structural Research, Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Faculty of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
8
|
Biswas P, Ghorai M, Mishra T, Gopalakrishnan AV, Roy D, Mane AB, Mundhra A, Das N, Mohture VM, Patil MT, Rahman MH, Jha NK, Batiha GES, Saha SC, Shekhawat MS, Radha, Kumar M, Pandey DK, Dey A. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology, and health-promoting activities. Phytother Res 2022; 36:4425-4476. [PMID: 36256521 DOI: 10.1002/ptr.7649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/29/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
Piper longum (family Piperaceae), commonly known as "long-pepper" or "Pippali" grows as a perennial shrub or as an herbaceous vine. It is native to the Indo-Malaya region and widely distributed in the tropical and subtropical world including the Indian subcontinent, Sri Lanka, Middle-East, and America. The fruits are mostly used as culinary spice and preservatives and are also a potent remedy in various traditional medicinal systems against bronchitis, cough, cold, snakebite, and scorpion-sting and are also used as a contraceptive. Various bioactive-phytochemicals including alkaloids, flavonoids, esters, and steroids were identified from the plant extracts and essential oils from the roots and fruits were reported as antimicrobial, antiparasitic, anthelminthic, mosquito-larvicidal, antiinflammatory, analgesic, antioxidant, anticancer, neuro-pharmacological, antihyperglycaemic, hepato-protective, antihyperlipidaemic, antiangiogenic, immunomodulatory, antiarthritic, antiulcer, antiasthmatic, cardioprotective, and anti-snake-venom agents. Many of its pharmacological properties were attributed to its antioxidative and antiinflammatory effects and its ability to modulate a number of signalling pathways and enzymes. This review comprehensively encompasses information on habit, distribution, ethnobotany, phytochemistry, and pharmacology of P. longum in relation to its medicinal importance and health benefits to validate the traditional claims supported by specific scientific experiments. In addition, it also discusses the safety and toxicity studies, application of green synthesis and nanotechnology as well as clinical trials performed with the plant also elucidating research gaps and future perspectives of its multifaceted uses.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tulika Mishra
- Department of Botany, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Debleena Roy
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | | | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | | | - Manoj Tukaram Patil
- Department of Botany, SNJB's KKHA Arts SMGL Commerce and SPHJ Science College Chandwad (Nashik) Maharashtra, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Manoj Kumar
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.,Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
9
|
A Review of Bioactive Compounds and Antioxidant Activity Properties of Piper Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196774. [PMID: 36235309 PMCID: PMC9573611 DOI: 10.3390/molecules27196774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Antioxidants are compounds that are able to inhibit the negative effects that come from free radicals. The phenomenon of imbalanced antioxidant production and the accumulation of free radicals in cells and tissues can cause oxidative stress. Excessive free radicals that enter the body cannot be warded off by endogenous antioxidant compounds so that the required antioxidant compounds can come from the outside, which helps in the performance of endogenous antioxidants. Antioxidants that come from outside consist of synthetic and natural antioxidants; however, synthetic antioxidants are not an option because they have toxic and carcinogenic effects. Therefore, the use of natural ingredients is an alternative method that is needed to create a new natural antioxidant compound. Piper species are being considered as possible medicinal plants for the development of new sources of antioxidants. Several studies have been carried out starting from the extract levels, fractions, and compounds of the Piper species, which showed good antioxidant activity. Currently, some of these plants are being used as ingredients in traditional medicines to treat allergies, toothaches, and coughs. This review examines the distribution, botanical data, pharmacology, especially antioxidant activity, and the compounds contained in five Piper species, namely Piper amalago L., Piper betle L., Piper hispidum Sw., Piper longum L., and Piper umbellatum L.
Collapse
|
10
|
Yan T, Zhu X, Zhang X, Jia X, Liu J, Wang X, Xiao Y, Xiao Z, Liu T, Dong Y. The application of proteomics and metabolomics to reveal the molecular mechanism of Nutmeg-5 in ameliorating cardiac fibrosis following myocardial infarction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154382. [PMID: 35963196 DOI: 10.1016/j.phymed.2022.154382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nutmeg-5, an ancient and classic formula in traditional Mongolian medicine comprising five kinds of traditional Chinese medicine, is widely used in the treatment of myocardial infarction (MI, called heart "Heyi" disease in Mongolian medicine). Cardiac fibrosis plays a critical role in the development and progression of heart failure after MI. However, the material basis and pharmacological mechanisms of the effect of Nutmeg-5 on cardiac fibrosis after MI remain unclear. OBJECTIVE The aim of this study was to first explore the potential material basis and molecular mechanism of action of Nutmeg-5 in improving cardiac fibrosis after MI via a multiomics approach. METHODS The constituents in Nutmeg-5 were identified by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). High-performance liquid chromatography (HPLC) and gas chromatography (GC)-based fingerprints of Nutmeg-5 were analysed, and characteristic peaks were identified by comparison to standard samples. A rat MI model was created by permanent ligation of the left anterior descending artery. The protective effect of Nutmeg-5 on cardiac fibrosis after MI was evaluated by tissue histology and measurement of the serum biomarkers of myocardial injury. Cardiac fibrosis levels were evaluated by Sirius red staining. Differentially expressed proteins in the myocardium and metabolites in the serum were explored by proteomic and untargeted metabolome analyses, respectively. Pearson correlation analysis was performed to explore the association between serum metabolites and myocardial proteins. RESULTS A total of 67 constituents were identified in Nutmeg-5 by UPLC-MS/MS. Sixteen components were identified in the fingerprint of Nutmeg-5 by comparison with a standard sample. Six lactones were isolated from Nutmeg-5 and quantified by HPLC and GC. MI was significantly alleviated in Nutmeg-5-treated rats compared to MI rats, as demonstrated by their decreased mortality, improved cardiac function, and attenuated cardiac fibrosis and myocardial injury. A total of 252 significant differential metabolites were identified in plasma between model and Nutmeg-5-treated rats by untargeted metabolome analysis. Among these, 36 critical metabolites were associated with Nutmeg-5 activity. Proteomic analysis identified 338 differentially expressed proteins in the rat myocardium between MI and Nutmeg-5-treated rats, including 204 upregulated and 134 downregulated proteins. Protein set enrichment analysis revealed that Nutmeg-5 treatment significantly inhibited the extracellular matrix (ECM)-receptor interaction pathway, which was activated in the myocardium of MI rats. A significant decrease in collagen and alpha smooth muscle actin expression levels was found in the myocardium of Nutmeg-5-treated rats compared to MI rats. These results illustrated that Nutmeg-5 had a significant protective effect on cardiac fibrosis after MI. A significant correlation was found between the ECM-receptor interaction pathway in the myocardium and critical metabolites in the serum. In addition, there were positive correlations between the levels of critical metabolites and the expression levels of transforming growth factor (TGF)-β1 and Smad2 in the rat myocardium. CONCLUSIONS Nutmeg-5 alleviated cardiac fibrosis after MI in rats by inhibiting the myocardial ECM-receptor interaction pathway and TGF-β1/Smad2 signalling, which was achieved by regulating plasma metabolites.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xiaoling Zhu
- Inner Mongolian International Mongolian Hospital, University East Street, Hohhot 010065, PR China
| | - Xueni Zhang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China
| | - Xin Jia
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China; Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Xianjue Wang
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China
| | - Yunfeng Xiao
- Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, PR China
| | - Zhibin Xiao
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, PR China.
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Hohhot 010110, PR China.
| |
Collapse
|
11
|
Shi J, Yang Y, Zhou X, Zhao L, Li X, Yusuf A, Hosseini MSMZ, Sefidkon F, Hu X. The current status of old traditional medicine introduced from Persia to China. Front Pharmacol 2022; 13:953352. [PMID: 36188609 PMCID: PMC9515588 DOI: 10.3389/fphar.2022.953352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) includes over ten thousand herbal medicines, some of which were introduced from outside countries and territories. The Silk Road enabled the exchange of merchandise such as teas, silks, carpets, and medicines between the East and West of the Eurasia continent. During this time, the ‘Compendium of Materia Medica’ (CMM) was composed by a traditional medicine practitioner, Shizhen Li (1,518–1,593) of the Ming Dynasty. This epoch-making masterpiece collected knowledge of traditional medical materials and treatments in China from the 16th century and before in utmost detail, including the origin where a material was obtained. Of 1892 medical materials from the CMM, 46 came from Persia (now Iran). In this study, the basic information of these 46 materials, including the time of introduction, the medicinal value in TCM theory, together with the current status of these medicines in China and Iran, are summarized. It is found that 20 herbs and four stones out of the 46 materials are registered as medicinal materials in the latest China Pharmacopoeia. Now most of these herbs and stones are distributed in China or replacements are available but saffron, ferula, myrrh, and olibanum are still highly dependent on imports. This study may contribute to the further development, exchange, and internationalization of traditional medicine of various backgrounds in the world, given the barriers of transportation and language are largely eased in nowadays.
Collapse
Affiliation(s)
- Jinmin Shi
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yifan Yang
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhou
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Lijun Zhao
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohua Li
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Abdullah Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry. Kashi University, Kashgar, China
| | - Mohaddeseh S. M. Z. Hosseini
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | | | - Xuebo Hu
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuebo Hu,
| |
Collapse
|